The PR-1 Series is a versatile specialty pressure reducing control regulator designed to fulfill a wide range of needs in instrumentation sample systems and other applications such as semiconductor processing gases. The many features of the PR-1 make it ideal for a wide range of applications controlling pressures at low to moderate flows in gas or liquid service. 316L material is used to facilitate welded connections. Stainless steel caps and adjusting screws prevent atmospheric corrosion and maintain appearance. Enhanced internal body surface finish of better than 25 Ra plus electropolishing allows easier cleaning and potentially less particle contamination in the flow stream.

Six different seat materials, three alternate orifice sizes and eight pressure control ranges with stainless diaphragms offer the user a wide spectrum of capabilities for pressure control with inlet pressures up to 6,000 psig and standard operating temperatures up to 500° F (260° C).

* Replaces the LPR and MR Series.

Features & Specifications
- Gas or liquid service
- 316L stainless steel, Inconel®, Teflon®, and Tefzel® only in flow stream
- Electropolished 316L body with better than 25 Ra diaphragm cavity surface finish
- Stainless steel cap with stainless steel adjusting screw
- Inlet pressures of up to 6,000 psi
- Adjustable outlet pressure ranges of 0–6 psig, 0–10 psig, 0–25 psig, 0–50 psig, 0–100 psig, 0–250 psig, 0–500 psig, and 0–750 psig
- Operating temperatures of −40° F to +500° F (−40° C to +260° C)
- 20μ filters
- Bubble-tight shutoff under most conditions
- Cv flow coefficient: 0.06

Options
- Wetted materials of construction: Monel®, Hastelloy® and titanium
- Diaphragm attached poppet
- Special fittings
- Diaphragm assist spring for vacuum purging
- Larger Cv’s of 0.2 and 0.5, smaller Cv’s of 0.025
- Panel mount (1¾” mounting hole)

Maximum Temperature & Operating Inlet Pressures

<table>
<thead>
<tr>
<th>Seat Material</th>
<th>Maximum Temperature</th>
<th>Maximum Operating Inlet Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tefzel*</td>
<td>150° F (66° C)</td>
<td>@ 3,600 psig (24.82 MPa)</td>
</tr>
<tr>
<td>High density Teflon*</td>
<td>150° F (66° C)</td>
<td>@ 3,600 psig (24.82 MPa)</td>
</tr>
<tr>
<td>CF Teflon*</td>
<td>175° F (80° C)</td>
<td>@ 3,600 psig (24.82 MPa)</td>
</tr>
<tr>
<td>PCTFE (formerly Kel-F® 81)</td>
<td>175° F (80° C)</td>
<td>@ 6,000 psig (41.37 MPa)</td>
</tr>
<tr>
<td>Polymide</td>
<td>500° F (260° C)</td>
<td>@ 3,600 psig (24.82 MPa)</td>
</tr>
<tr>
<td>Polyimide</td>
<td>175° F (80° C)</td>
<td>@ 6,000 psig (41.37 MPa)</td>
</tr>
<tr>
<td>PEEK™</td>
<td>500° F (260° C)</td>
<td>@ 3,600 psig (24.82 MPa)</td>
</tr>
<tr>
<td>PEEK™</td>
<td>175° F (80° C)</td>
<td>@ 6,000 psig (41.37 MPa)</td>
</tr>
</tbody>
</table>

* Temperatures in excess of 175° F (80° C) require the use of a metal knob or the tamper-proof option.
PR-1 Series

How to Order

K/ PR1 – 1 A 1 1 A 3 C 1 1 1 C

<table>
<thead>
<tr>
<th>REPAIR KIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP ASSEMBLY</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BODY MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PORT CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>For more port configurations, see page 35.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROCESS PORT TYPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAVITY FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEAT MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Q</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLOW COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTLET RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>W</td>
</tr>
</tbody>
</table>

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.
The PR-2 Series are compact brass body regulators designed for maximum flexibility in many classes of instrumentation service. Specifically designed for gas applications, this regulator is capable of accepting high pressures directly from cylinders and other high pressure, non-corrosive systems. It is ideally suited for carrier gas pressure regulation, yet it is economical enough to use in low-pressure air systems such as instrument cabinet air purge service.

* Replaces the LPR Series.

Features & Specifications
- Gas or liquid service
- Brass (alloy 360) construction
- Stainless steel diaphragm with Teflon® lining
- Stainless steel poppet
- Better than 25 Ra finish in diaphragm cavity
- 20μ inlet filter
- Bubble-tight shutoff
- Outlet pressure ranges: 0–10 psig, 0–25 psig, 0–50 psig, 0–100 psig, 0–250 psig, 0–500 psig and 0–750 psig
- Operating temperatures: −40° F to +175° F (−40° C to +80° C)
- Inlet and outlet connection: ¼˝ FNPT

Options
- ⅛˝ or ⅜˝ FNPT connections
- Panel mount (requires 1½˝ mounting hole)
- Extra ports
- Pressure gauges

Maximum Temperature & Operating Inlet Pressures

<table>
<thead>
<tr>
<th>Seat Material</th>
<th>Maximum Temperature* @</th>
<th>Maximum Operating Inlet Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tefzel*</td>
<td>150°F (66°C) @ 3,600 psig (24.82 MPa)</td>
<td></td>
</tr>
<tr>
<td>High density Teflon*</td>
<td>150°F (66°C) @ 3,600 psig (24.82 MPa)</td>
<td></td>
</tr>
<tr>
<td>CF Teflon*</td>
<td>175°F (80°C) @ 3,600 psig (24.82 MPa)</td>
<td></td>
</tr>
<tr>
<td>PCTFE (formerly Kel-F® 81)</td>
<td>175°F (80°C) @ 3,600 psig (24.82 MPa)</td>
<td></td>
</tr>
<tr>
<td>Polyimide</td>
<td>175°F (80°C) @ 3,600 psig (24.82 MPa)</td>
<td></td>
</tr>
<tr>
<td>PEEK™</td>
<td>175°F (80°C) @ 3,600 psig (24.82 MPa)</td>
<td></td>
</tr>
</tbody>
</table>

* Temperatures in excess of 175°F (80°C) require the use of a metal knob or the tamper-proof option.
PR-2 Series

How to Order

K/ PR2 – 2 A 1 1 A 3 C 1 1 1 C

REPAIR KIT

BODY MATERIALS
2 Brass
8 Brass, chrome-plated
A Brass, nickel-plated

PORT CONFIGURATION
A Standard (one inlet & one outlet port)
For more port configurations, see page 35.

PROCESS PORT TYPES
1 ¼” FNPT (¼” FNPT gauge ports)
4 3⁄8˝ FNPT (¼˝ FNPT gauge ports)
0 ¼˝ FNPT (⅛˝ FNPT gauge ports)
A ¼” ISO 7-Rc taper (¼” FNPT gauge ports)

SURFACE FINISH/DIAPHRAGM CAVITY
1 < 25 Ra, standard

SEAT MATERIALS
A Tefzel®
B CF Teflon®
C Polyimide
H PCTFE (formerly Kel-F® 81)
I High-density Teflon®
Q PEEK™

FLOW COEFFICIENT
3 0.06
5 0.2
C 0.025
H 0.50

OUTLET RANGE
C 0–10 psig
D 0–25 psig
E 0–50 psig
G 0–100 psig
I 0–250 psig
J 0–500 psig
W 0–750 psig

OPTIONAL CAP FINISH
Blank Black anodize (standard)
1 Chrome-plated
2 Electroless nickel-plated

CAP ASSEMBLY
1 Standard, aluminum
3 1” panel mount, aluminum
4 Panel mount, aluminum
5 Captured vent, aluminum
6 Captured vent, panel mount, aluminum
8 Tamper-proof, aluminum
9 Fine adjust, ⅜” panel mount, aluminum
0 Fine adjust, 1⅛” panel mount, aluminum
A Captured vent, tamper-proof, aluminum
E Tamper-proof, panel mount, aluminum

DIAPHRAGM FACING/BACKING
1 Teflon®/stainless steel
2 Teflon®/Viton®
6 Tefzel® ring/stainless steel

DIAPHRAGM TYPE
1 Standard diaphragm
2 Diaphragm attached poppet
3 Self-relieving
4 Vacuum assist spring, standard diaphragm
5 Vacuum assist spring, diaphragm attached poppet
6 Vacuum assist spring, self-relieving
7 Liquid service

Outline & Mounting Dimensions
Weight = 1.7 lbs (0.77kg)

For Your Safety
It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.

Teflon® and Tefzel® are registered trademarks of the DuPont Company.
PEEK™ is a trademark of Victrex PLC.
Kel-F® is a registered trademark of 3M Company.
PVR Series
Low Pressure Regulator
Inlet 0 to 3,000 psig & Outlet 2” H₂O to 60 psig

Features
• Low pressure control
• Exceptional accuracy & response
• Compatible with corrosive and non-corrosive gases & liquids

Applications
• Chromatography
• Process stream sampling
• Bubbling operations
• Medical instrumentation
• Research laboratories
• Instrument calibration

How it Works

Closed
With the poppet against the seat, full upstream pressure is applied to the poppet effecting a bubble-tight seal.

Regulating
When the downstream process demands flow, the pressure acting on the bottom of the diaphragm decays, allowing the adjusting spring force to push the poppet down. This in turn unseats the poppet, allowing flow to begin and pressure under the diaphragm to increase until balance is achieved between adjusting spring force and downstream pressure. This condition continues until process ceases. At this point, increasing pressure overcomes spring force, moving diaphragm up and allowing the poppet to close.

Technical Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Construction Material</td>
<td>Polyvinyl chloride</td>
</tr>
</tbody>
</table>
| Spring Housing Material | - PVR1, PVR2 & PVR3: Polyvinyl chloride
 | - PVR4 & PVR5: Aluminum alloy |
| Seat Material | Kel-F® with synthetic sapphire ball poppet |
| Diaphragm Material | Teflon® |
| Adjustment Screw Material | Delrin® |
| Trim Material | 316 stainless steel or Monel® |
| Port Sizes | ¼” NPT female |
| Pressure Ratings | Inlet: 3,000 psig (207 BAR)
 | Outlet: 2” H₂O to 60 psig (4 BAR), 5 ranges |
| Temperature Range | 0° F to +125° F (−18° C to +52° C) |
| Flow Capacity | Cv = 0.011 maximum
 | Orifice diameter = 0.025” |
| Weight | PVR1, PVR2 & PVR3: 14 oz
 | PVR4 & PVR5: 1.5 lbs |
| Leakage | Bubble-tight |
| Sensitivity | Less than ½ psi on all ranges over 2 psig |

Note: Proper filtration is recommended to prevent damage to sealing surfaces.

Circle Seal Controls
2301 Wardlow Circle • Corona, CA 92880
Phone (951) 270-6200 • Fax (951) 270-6201
www.circle-seal.com
PVR Series

Dimensions

Panel Mounting for PVR1, PVR2 & PVR3

Panel Mounting for PVR4 & PVR5

How to Order

REPAIR KIT

PRESSURE RANGE

1. 2” to 27˝ H₂O *
2. 1 to 6 psig
3. 6 to 20 psig
4. 20 to 40 psig
5. 40 to 60 psig

K/ PVR 3 M PM

OPTIONS
Blank None
PM Panel mount

TRIM MATERIAL
Blank 316 stainless steel
M Monel®

* 27˝ H₂O model is not recommended for dead-end service

Please consult your Circle Seal Controls distributor, representative, or the factory for information on special connections, operating pressures and temperature ranges.

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.

Kel-F® is a registered trademark of 3M Company.
Teflon® is a registered trademark of the DuPont Company.
Delrin® is a registered trademark of DuPont.
Monel® is a registered trademark of Special Metals Corporation.
PR01 Series
Miniature Non-venting Regulator
Inlet 200 to 3,000 psig & Outlet 10 to 720 psig

How it Works

Closed
With the poppet against seat, full upstream pressure is applied to the poppet, effecting a bubble-tight seal.

Regulating
As the downstream process demands flow, the pressure acting on the piston decays, allowing the adjusting spring force to push the piston down, which in turn unseats the poppet. This permits flow to start, and pressure under the piston to increase, until balance is achieved between adjusting spring force and downstream pressure. This condition continues until process demand ceases, at which point increasing pressure overcomes spring force, moving piston up and allowing the poppet to close.

Features
- Miniature size: 1¾” diameter by 3½” high
- Soft seat—suitable for dead-end service
- Tight shutoff
- Single hole panel mounting
- Optional pressure gauges

Applications
- R & D pilot plants
- Research laboratories
- Chromatography
- Cylinder pressurization
- Bubbling operations
- Instrument pressurization
- Slow gas purge control
- Inert gas blanketing (food processing)
- Pilot control for large control units
- Lecture bottles

Technical Data

<table>
<thead>
<tr>
<th>Body Construction Materials</th>
<th>Aluminum alloy, anodized blue, or brass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Materials</td>
<td>Kel-F® or Nylatron®</td>
</tr>
<tr>
<td>Seal Materials</td>
<td>Buna N, ethylene propylene, neoprene, or Viton®</td>
</tr>
<tr>
<td>Trim Material</td>
<td>Stainless steel or plated steel</td>
</tr>
<tr>
<td>Handle Material</td>
<td>ABS plastic</td>
</tr>
<tr>
<td>Gauge material</td>
<td>Brass</td>
</tr>
<tr>
<td>Port Size</td>
<td>¼” NPT female</td>
</tr>
<tr>
<td>Media</td>
<td>Inert gases</td>
</tr>
<tr>
<td>Pressure Ratings</td>
<td>Inlet: 200 to 3,000 psig (207 BAR)</td>
</tr>
<tr>
<td></td>
<td>Outlet: 10 to 720 psig</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>−65° F to +160° F (−54° C to +71° C)</td>
</tr>
<tr>
<td>Weight</td>
<td>Regulators: 8.2 oz</td>
</tr>
<tr>
<td></td>
<td>Gauges: 5.2 oz</td>
</tr>
</tbody>
</table>

Note: Proper filtration is recommended to prevent damage to sealing surfaces.

PR01 Series

Dimensions

How to Order

- **REPAIR KIT**
 - **MAXIMUM OUTLET PRESSURE**
 - 1 100 psig (7 BAR)
 - 2 200 psig (14 BAR)
 - 3 400 psig (28 BAR)
 - 4 800 psig (55 BAR)

- **BODY & PANEL NUT MATERIAL**
 - A Aluminum alloy, anodized blue
 - B Brass

- **PORT SIZE & TYPE**
 - 1P 1/8˝ NPT female

OPTIONS
- O None
- G Gauges, 1½˝ diameter
- P Panel mount

SEAT MATERIAL
- D Nylatron® (standard)
- B Kel-F®

SEAL MATERIAL
- E Ethylene propylene
- N Neoprene
- V Viton®
- 9 Buna N

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Operating Pressure Range (psi)</th>
<th>Approx. Outlet Pressure Increase per 100 psi, Inlet Decrease PSI</th>
<th>Approx. Air Flow vs. Outlet Pressure (SCFM/PSI)*</th>
<th>Approx. Cv*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR011</td>
<td>10–90 psi</td>
<td>3.5 psi</td>
<td>10 scfm/70 psi</td>
<td>0.007</td>
</tr>
<tr>
<td>PR012</td>
<td>20–180 psi</td>
<td>3.5 psi</td>
<td>18 scfm/140 psi</td>
<td>0.012</td>
</tr>
<tr>
<td>PR013</td>
<td>40–360 psi</td>
<td>3.5 psi</td>
<td>31 scfm/280 psi</td>
<td>0.021</td>
</tr>
<tr>
<td>PR014</td>
<td>80–720 psi</td>
<td>8.0 psi</td>
<td>47 scfm/660 psi</td>
<td>0.031</td>
</tr>
</tbody>
</table>

* At maximum inlet and set at maximum rated outlet lock-up pressure. 40μ absolute filtration of inlet fluid media recommended. Relief valve downstream of outlet port should always be used. Main seat is factory tested to be bubble-tight for a period of one minute with full inlet pressure.

Please consult your Circle Seal Controls distributor, representative, or the factory for information on special connections, operating pressures and temperature ranges.

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.

Kel-F® is a registered trademark of 3M Company.
Nylatron® is a registered trademark of DSM Engineering Plastic Products.
Viton® is a registered trademark of DuPont Dow Elastomers.
SR800 Series
High Capacity Pressure Regulator
Inlet to 3,600 psig & Outlet to 250 psig

Features
• High flow rates of 1.65 Cv
• Diaphragm provides maximum sensitivity
• Pressure relief valve for safety protection
• Panel mounting standard
• Wide range of fluid compatibility

Applications
• Manifold pressure control
• Process gas control
• Blanket or purge gas control
• High flow station or main line controls

How it Works
Closed
Balanced poppet is spring-loaded against the seat. When full upstream pressure is applied, a slightly unbalanced force is developed which enhances sealing.

Regulating
As the downstream process demands flow, the pressure acting on the bottom of the diaphragm decays, allowing the adjusting spring force to push the poppet down. This in turn unseats the poppet, allowing flow to begin and pressure under the diaphragm to increase until balance is achieved between adjusting spring force and downstream pressure. This condition continues until process demand ceases. At this point, increasing pressure overcomes the spring force, moving the diaphragm up and allowing the poppet to close.

Technical Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Construction Material</td>
<td>Brass forging</td>
</tr>
<tr>
<td>Seat Material</td>
<td>Nylatron® GS (standard)*</td>
</tr>
<tr>
<td>Seal & Diaphragm Material</td>
<td>Neoprene (standard)*</td>
</tr>
<tr>
<td>Spring Material</td>
<td>Steel</td>
</tr>
<tr>
<td>Spring Housing Material</td>
<td>Brass</td>
</tr>
<tr>
<td>Port Size</td>
<td>½˝ NPT female</td>
</tr>
<tr>
<td>Pressure Ratings</td>
<td>Inlet: 3,600 psig (248 BAR)</td>
</tr>
<tr>
<td></td>
<td>Outlet:</td>
</tr>
<tr>
<td></td>
<td>• SR800: 250 psig (17 BAR) max.</td>
</tr>
<tr>
<td></td>
<td>• SR830: 125 psig (8.6 BAR) max.</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>−60° F to +160° F (−51° C to +71° C)</td>
</tr>
<tr>
<td>Flow Capacity</td>
<td>Cv = 1.65 max.</td>
</tr>
<tr>
<td></td>
<td>Orifice diameter = 0.30˝</td>
</tr>
</tbody>
</table>

* See "How to Order" for optional materials
Note: Proper filtration is recommended to prevent damage to sealing surfaces.

Circle Seal Controls
2301 Wardlow Circle • Corona, CA 92880
Phone (951) 270–6200 • Fax (951) 270–6201
www.circle-seal.com
SR800 Series

How to Order

REPAIR KIT

BASIC MODEL NUMBER & OUTLET PRESSURE RANGE

- **SR800** 0 to 250 psig (0 to 17 BAR)
- **SR830** 0 to 125 psig (0 to 9 BAR)

BODY MATERIAL

- **B** Brass forging

INLET CONNECTION

- **1** MS33656–8
- **2** MS33656–12
- **3** ½˝ NPT female
- **xxx** Insert CGA number (example: 580)

OUTLET CONNECTION

- **1** MS33656–8
- **2** MS33656–12
- **3** ½˝ NPT female

OPTIONS

- **G** Pressure gauges, brass
- **B** Bell handle
- **L** Hex head adjustable screw with lock nut

CLEANING LEVELS

- **1** For general oxygen service
- **2** For general pneumatic service
- **3** Specify (define on sales order)
- **4** For precision pneumatic service

SEAT MATERIAL

- **1** Nylatron® GS (standard)
- **2** Kel-F® (3,000 psig max.)
- **4** KYNAR®
- **5** Polyimide (Vespel® SP-21)
- **6** Polyurethane

SEAL & DIAPHRAGM MATERIAL

- **1** Neoprene (standard)
- **3** Viton®
- **4** Buna N
- **5** Teflon® seal, Teflon®-coated neoprene diaphragm

* If this regulator is to be used in oxygen service, specify “GENERAL OXYGEN SERVICE” when ordering or furnish the factory a copy of the special requirements. Vespel® SP-21 or Kel-F® seat, Viton® diaphragm and seals. Temperature range: −20° F to +250° F.

Outlet pressure rise per 100 psi inlet pressure decay ¼ psi max.

Please consult your Circle Seal Controls distributor, representative, or the factory for information on special connections, operating pressures and temperature ranges.

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.
IR10 Series
Brass Pressure Regulator
Inlet to 4,000 psig & Outlet to 2,500 psig

Features
• Medium pressure and high flow
• Balanced poppet provides precise control
• Soft seat for dead-end service
• Pressure relief valve for extra safety

Applications
• Chromatography
• Manifold & cylinder regulation
• Bubbling operations
• Hydrogenation
• Research laboratories
• Pressure testing

How it Works

Closed
Balanced poppet is spring-loaded against the seat. When full upstream pressure is applied, a slightly unbalanced force is developed which enhances sealing.

Regulating
As the downstream process demands flow, the pressure acting on the bottom of the diaphragm decays, allowing the adjusting spring force to push the poppet down. This in turn unseats the poppet, allowing flow to begin and pressure under the diaphragm to increase until balance is achieved between adjusting spring force and downstream pressure. This condition continues until process demand ceases. At this point, increasing pressure overcomes the spring force, moving the diaphragm up, allowing the poppet to close.

Technical Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Construction Material</td>
<td>Brass</td>
</tr>
<tr>
<td>Seat Material</td>
<td>Nylatron®</td>
</tr>
<tr>
<td>Seal Material</td>
<td>Neoprene</td>
</tr>
<tr>
<td>Diaphragm Material</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Gauge Material</td>
<td>Brass, 2½” diameter</td>
</tr>
<tr>
<td>Trim Materials</td>
<td>Brass or stainless steel</td>
</tr>
<tr>
<td>Port Size</td>
<td>¼” NPT female, CGA inlet fitting optional</td>
</tr>
<tr>
<td>Pressure Ratings</td>
<td>Inlet: 0 to 4,000 psig (276 BAR)</td>
</tr>
<tr>
<td></td>
<td>Outlet: 0 to 2,500 psig (172 BAR)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>−40° F to +160° F (−40° C to +71° C)</td>
</tr>
<tr>
<td>Flow Capacity</td>
<td>Cv = 0.42</td>
</tr>
<tr>
<td></td>
<td>Orifice diameter = 0.15”</td>
</tr>
<tr>
<td>Weight</td>
<td>Approximately 4 lbs</td>
</tr>
</tbody>
</table>

Note: Proper filtration is recommended to prevent damage to sealing surfaces.

Circle Seal Controls
2301 Wardlow Circle • Corona, CA 92880
Phone (951) 270-6200 • Fax (951) 270-6201
www.circle-seal.com
IR10 Series

Dimensions & Flow Curves

How to Order

REPAIR KIT

OUTLET PRESSURE RANGE

- **0** 0 to 500 psig (0 to 34 BAR)
- **1** 0 to 1,000 psig (0 to 70 BAR)
- **2** 0 to 2,500 psig (0 to 172 BAR)

Outlet pressure rise per 100 psi pressure decay: 0.1 psi max. Maximum inlet pressure: 4,000 psi

If this regulator is to be used in oxygen service, specify “GENERAL OXYGEN SERVICE” when ordering or furnish the factory with a copy of the special requirements.

Fluid media: non-corrosive gases and liquids.

Please consult your Circle Seal Controls distributor, representative, or the factory for information on special connections, operating pressures and temperature ranges.

Inlet/Outlet Ranges

<table>
<thead>
<tr>
<th>Model</th>
<th>Outlet Pressure Range</th>
<th>Inlet Gauge Range</th>
<th>Outlet Gauge Range</th>
<th>Safety Valve Set Pressure</th>
<th>Max. Air Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR10</td>
<td>0–500 psig</td>
<td>0–5,000 psi</td>
<td>0–600 psi</td>
<td>0–600 psi</td>
<td>200 scfm</td>
</tr>
<tr>
<td>IR11</td>
<td>0–1,000 psig</td>
<td>0–5,000 psi</td>
<td>0–1,500 psi</td>
<td>0–1,400 psi</td>
<td>400 scfm</td>
</tr>
<tr>
<td>IR12</td>
<td>0–2,500 psig</td>
<td>0–5,000 psi</td>
<td>0–3,000 psi</td>
<td>0–2,900 psi</td>
<td>1,000 scfm</td>
</tr>
</tbody>
</table>

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.

Nylatron® is a registered trademark of DSM Engineering Plastic Products.
PR50 Series
High Pressure Self-venting Pressure Regulator
Inlet & Outlet to 10,000 psig

Features
- Balanced poppet design
- Self-relieving captured vent
- Low operating torque

Applications
- High pressure testing
- Purging & charging
- Research laboratories
- Chemical/petroleum plants
- Manufacturing processes

Technical Data

Body Construction Materials	Brass, 303 or 316 stainless steel
Seat Materials	Kel-F® or Vespel®
Seal Materials	Buna N, ethylene propylene, neoprene or Viton®
Port Sizes	¼” and ½” NPT female, ½” male tube, or ½” British parallel pipe
Pressure Ratings	Inlet: • CRES: to 10,000 psig (690 BAR) • Brass: to 6,000 psig (414 BAR) Outlet: 40 to 10,000 psig (2.7 to 690 BAR)
Temperature Range	Viton®: −20° F to +225° F (−29° C to +107° C) All others: −40° F to +225° F (−40° C to +107° C)
Flow Capacity	Cv = 0.30 Orifice diameter = 0.13”
Weight	8.5 lbs (less gauges)
Leakage	Bubble-tight (air)

Note: Proper filtration is recommended to prevent damage to sealing surfaces.

How it Works

Closed
Balanced poppet is spring-loaded against the seat. When full upstream pressure is applied, a slightly unbalanced force is developed which enhances sealing.

Regulating
As the downstream process demands flow, the pressure acting on the piston decays, allowing the adjusting spring force to push the piston down. This unseats the poppet, allowing flow to begin and pressure under the piston to increase until balance is achieved between adjusting spring force and downstream pressure. This condition continues until process demand ceases. At this point, increasing pressure overcomes the spring force, moving the piston up, allowing the poppet to close.

Venting
If the downstream pressure should increase beyond regulation set point or handle is backed off to decrease regulated pressure level, downstream pressure will vent through the piston and guide to the vent port. The pressure load from the piston overcomes the “set” spring load and moves the piston upward. The poppet is thereby unseated to allow venting flow. As pressure decreases under the piston, the reverse action occurs and the vent seat is closed off.

Circle Seal Controls
2301 Wardlow Circle • Corona, CA 92880
Phone (951) 270-6200 • Fax (951) 270-6201
www.circle-seal.com
PR50 Series

How to Order

REPAIR KIT

MAXIMUM OUTLET PRESSURE

- **2** 40 to 400 psig (28 BAR)
- **3** 80 to 800 psig (55 BAR)
- **4** 150 to 1,500 psig (103 BAR)
- **5** 300 to 3,000 psig (207 BAR)
- **6** 450 to 4,500 psig (310 BAR)
- **7** 600 to 6,000 psig (414 BAR)
- **8** 1,000 to 10,000 psig (690 BAR)

BODY MATERIAL

- **B** Brass
- **U** 316 stainless steel
- **T** 303 stainless steel

INLET & OUTLET PORTS

- **1** ¼˝ NPT female
- **2** ½˝ NPT female
- **3** ½˝ tube (MS55649–8)
- **4** ½˝ British parallel pipe thread (vent port ¼˝ BPPT, gauge port ¼˝ BS taper thread)

OPTIONS

- **G** Gauges
- **N** 316 CRES panel nut

CLEANING LEVELS

- **1** General oxygen service**
- **2** General pneumatic service
- **3** Specify
- **4** Precision pneumatic service

SEAT MATERIAL

- **1** Vespel®
- **2** Kel-F® (limited to 3,000 psi inlet pressure, PR52–PR55 Series only)

SEAL MATERIAL

- **0** Ethylene propylene
- **1** Neoprene (standard)
- **3** Viton® (standard for oxygen service)
- **4** Buna N

* For best regulating characteristics, use only within 10% to 90% of maximum outlet pressure range. Either liquid or gas is handled equally well by the PR50 Series. No modification is required to convert from gas service to liquid. Seals and seats are available for nearly all liquids or gases. The PR50 is not recommended for continuous liquid service.

** For oxygen service, use Vespel® SP-21 seat and Viton® or neoprene seals.

Please consult your Circle Seal Controls distributor, representative, or the factory for information on special connections, operating pressures and temperature ranges.

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.
HPR50 Series
High Pressure, High Flow, Fluid Pressure Regulator
Inlet 0 to 10,000 psig & Outlet 40 to 10,000 psig

How it Works

Closed
The balanced poppet is spring-loaded against the seat.

Regulating
As the downstream process demands flow, the pressure acting on the piston decays, allowing the adjusting spring force to push the piston down, at which point increasing pressure overcomes spring force, moving the piston up and allowing the poppet to close.

Venting
If the downstream pressure should increase beyond regulation set point or the handle is backed off to decrease the regulated pressure level, the downstream pressure will vent through the piston and the guide to the vent port.

Features
- Balanced poppet design
- Metal-to-metal seating
- Captured self-venting
- 303 or 316 stainless steel, or brass body
- High pressure 0–10,000 psig inlet and outlet range
- High flow equal to Cv of 0.30
- Internal damper for surge flows
- Ryton™ 7 plastic handle

Applications
- Hydraulic test systems—high pressure
- Off-shore platforms—valve actuation
- Deep water drilling—hydraulic support
- Manufacturing processes

Technical Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Construction Materials</td>
<td>303 or 316 stainless steel, or brass construction</td>
</tr>
<tr>
<td>Seat Material</td>
<td>17-4 PH CRES</td>
</tr>
<tr>
<td>Port Sizes</td>
<td>¼˝ and ½˝ NPT female, ½˝ tube, or ½˝ BSPP</td>
</tr>
<tr>
<td>Pressure Ratings</td>
<td></td>
</tr>
<tr>
<td>Inlet:</td>
<td></td>
</tr>
<tr>
<td>• CRES: to 10,000 psig (690 BAR)</td>
<td></td>
</tr>
<tr>
<td>• Brass: to 6,000 psig (414 BAR)</td>
<td></td>
</tr>
<tr>
<td>Outlet:</td>
<td>40 to 10,000 psig (2.7 to 690 BAR)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>–40° F to +225° F (–40° C to +107° C)</td>
</tr>
<tr>
<td>Flow Capacity</td>
<td>Cv = 0.30</td>
</tr>
</tbody>
</table>

Note: Proper filtration is recommended to prevent damage to sealing surfaces.

Circle Seal Controls
2301 Wardlow Circle • Corona, CA 92880
Phone (951) 270-6200 • Fax (951) 270-6201
www.circle-seal.com
HPR50 Series

Dimensions, Gauges & Typical Flow Curves

![Diagram of HPR50 Series pressure regulator]

How to Order

REPAIR KIT

OUTLET PRESSURE RANGE

- **0** 150 to 1,500 psig (10 to 103 BAR)
- **1** 300 to 3,000 psig (20 to 206 BAR)
- **2** 600 to 6,000 psig (40 to 414 BAR)
- **3** 1,000 to 10,000 psig (69 to 690 BAR)
- **4** 40 to 400 psig (2.7 to 28 BAR)

BODY MATERIAL

- **B** Brass
- **T** 303 stainless steel
- **U** 316 stainless steel

Please consult your Circle Seal Controls distributor, representative, or the factory for information on special connections, operating pressures and temperature ranges.

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.
GD720 Series
High Pressure, Manually Controlled Pressure Reducing Regulator
Inlet 0 to 10,000 psig & Outlet 5 to 6,000 psig

How it Works

Closed
Balanced poppet is spring-loaded against the seat. When full upstream pressure is applied, a slightly unbalanced force is developed which enhances sealing.

Regulating
As the downstream process demands flow, the downstream pressure acting on the bottom of the diaphragm decays, allowing the adjusting spring force to push the poppet down. This in turn unseats the poppet, allowing flow to begin and pressure under the diaphragm to increase until balance is achieved between dome pressure and downstream pressure. This condition continues until process demand ceases. At this point, increasing pressure overcomes dome pressure force, moving diaphragm up, allowing poppet to close.

Venting
If the downstream pressure should increase beyond regulation set point, or handle is backed off to decrease regulated pressure level, downstream and dome pressure will vent through check valve and through the built-in LR Series regulator.

Features
- Full range capability
- Single hand wheel control
- Balanced poppet insures accuracy
- Integral vent valve

Applications
- Air compressor systems
- Oxygen system charging
- Aircraft tire struts
- Aircraft component pressure testing

Technical Data

<table>
<thead>
<tr>
<th>Body Construction Materials</th>
<th>Bronze or stainless steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Material</td>
<td>Vespel® SP-21</td>
</tr>
<tr>
<td>Seals & Diaphragm Material</td>
<td>Neoprene</td>
</tr>
<tr>
<td>Adjustment Spring Material</td>
<td>Zinc chromate over black oxide high carbon steel</td>
</tr>
<tr>
<td>Valve Spring Material</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Other Components</td>
<td>Same as body material, stainless steel & Teflon*</td>
</tr>
</tbody>
</table>

| Port Sizes | ¼", ½" NPT female; ¼", 9⁄16" Aminco, AND10050-4 or AND10050-8 |
| Pressure Ratings | Maximum inlet pressure:
	• Bronze: 7,000 psig (483 BAR)
	• Stainless steel: 10,000 psig (690 BAR)
	Maximum outlet pressure: 6,000 psig (414 BAR)
Temperature Range	−65° F to +160° F (−54° C to +71° C)
Flow Capacity	Cv = 0.44
	Orifice diameter = 0.155"
Weight	11 lbs

Note: Proper filtration is recommended to prevent damage to sealing surfaces.

Circle Seal Controls
2301 Wardlow Circle • Corona, CA 92880
Phone (951) 270-6200 • Fax (951) 270-6201
www.circle-seal.com
GD720 Series

Dimensions & Flow Curve

<table>
<thead>
<tr>
<th>Port Size</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND10050–4</td>
<td>2.90</td>
</tr>
<tr>
<td>AND10050–8</td>
<td>3.16</td>
</tr>
<tr>
<td>¼˝ NPT female</td>
<td>2.72</td>
</tr>
<tr>
<td>½˝ NPT female</td>
<td>3.16</td>
</tr>
<tr>
<td>¼˝ Aminco</td>
<td>2.90</td>
</tr>
<tr>
<td>9⁄16˝ Aminco</td>
<td>3.34</td>
</tr>
</tbody>
</table>

How to Order

REPAIR KIT

OUTLET PRESSURE

0 20 to 3,600 psig (1.40 to 248 BAR)
1 15 to 2,000 psig (1.04 to 138 BAR)
2 10 to 800 psig (0.69 to 55 BAR)
3 5 to 200 psig (0.35 to 14 BAR)
4 40 to 6,000 psig (2.76 to 414 BAR)

BODY MATERIAL

B Bronze
T 303 stainless steel

INLET PORT

1 AND10050–4
2 AND10050–8
3 ¼˝ NPT female
4 ½˝ NPT female
5 ¼˝ Aminco
6 9⁄16˝ Aminco

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.
To meet the demands for the safe reduction of inlet pressures up to 10,000 psig, Circle Seal Controls provides the PR-57 Series regulator. This precision regulator features a piston-sensing design which provides the operator with low adjusting torque requirements when setting the outlet pressure. The body is constructed from 316L stainless steel, providing the ultimate in safety and corrosion resistance. The optional self-relieving feature provides an additional level in operational ease, as it allows for trapped downstream pressure to be safely vented to atmosphere through the bonnet.

* Replaces the LRxxE Series.

Features & Specifications
- Gas or liquid service
- 316L stainless steel construction
- Better than 25 Ra finish in diaphragm cavity
- Stainless steel spring-loaded piston sensor
- 20μ filter
- Bubble-tight shutoff
- Inlet pressure maximum 10,000 psig
- Outlet pressure ranges are 0–250 psig, 0–500 psig, 0–750 psig, 0–1,000 psig, 0–2,000 psig, 0–4,000 psig, 0–6,000 psig, 0–7,500 psig, and 0–10,000 psig
- Operating temperatures: −40° F to +150° F (−40° C to +66° C)
- Cv flow coefficient 0.05 or 0.2 (optional)

Applications
- Pilot plants
- Specialty gas
- Compressors
- High pressure test systems
- Breathing air tank refill

Options
- Gauges and CGA fittings for cylinder gas applications
- Self-relieving and captured vent
- ½” FNPT, 1/4” AND10050–4, 1/4” SAE J514, 1/4” MS33649, 1/4” Aminco, or 1/4” sch 40 pipe
How to Order

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K/PR57–1</td>
<td>REPAIR KIT</td>
</tr>
<tr>
<td>1</td>
<td>316L stainless steel</td>
</tr>
<tr>
<td>4</td>
<td>Monel®</td>
</tr>
</tbody>
</table>

BODY MATERIALS

- 316L stainless steel
- Monel®

PORT CONFIGURATION

- **A** Standard (one inlet & one outlet port)
- For more port configurations, see page 35.

PROCESS PORT TYPES

1. ¼˝ FNPT (¼˝ FNPT gauge ports)
2. ¼˝ tube (¼˝ tube gauge ports)
3. ½˝ FNPT (½˝ FNPT gauge ports)
4. AND10050–4 (¼˝ FNPT gauge ports)
5. SAE J514 (¼˝ FNPT gauge ports)
6. MS33649 (¼˝ FNPT gauge ports)
7. ¼˝ Aminco (¼˝ FNPT gauge ports)
8. ¼˝ sch 40 pipe (¼˝ FNPT gauge ports)

SURFACE FINISH/DIAPHRAGM CAVITY

- < 25 Ra
- < 25 Ra, with 10-32 mounting holes

SEAT MATERIALS

- C Polyimide (standard)
- Q PEEK™

FLOW COEFFICIENT

- 0.05 (standard)
- 0.2

PISTON MATERIAL

- 4 Stainless steel/Teflon® cavity o-ring
- 5 Stainless steel/Viton® cavity o-ring
- 6 Monel®/Viton® cavity o-ring
- 7 Monel®/Teflon® cavity o-ring

PISTON TYPE

- 1 Non-self-relieving
- 3 Self-relieving

OUTLET RANGE

- I 0–250 psig
- J 0–500 psig
- W 0–750 psig
- K 0–1,000 psig
- L 0–2,000 psig
- N 0–4,000 psig
- O 0–6,000 psig
- P 0–7,500 psig
- Q 0–10,000 psig

Maximum Temperature & Operating Inlet Pressures

<table>
<thead>
<tr>
<th>Seat Material</th>
<th>Maximum Temperature*</th>
<th>Maximum Operating Inlet Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyimide</td>
<td>150° F (66° C) @ 10,000 psig (68.95 MPa)</td>
<td></td>
</tr>
<tr>
<td>PEEK™</td>
<td>150° F (66° C) @ 10,000 psig (68.95 MPa)</td>
<td></td>
</tr>
</tbody>
</table>

Outline & Mounting Dimensions

- Weight = 4.4 lbs (2.0kg)
- Panel Ref 2.0 (50.8mm) Max. Thickness

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.
GD30 Series
Inlet & Outlet 0–3,600 psig Dome-loaded Pressure Regulators

Features
- Bubble-tight seal
- Precise control
- Rapid delivery
- Easily adjusted

Applications
- Breathing systems
- Research laboratories
- Aircraft servicing
- Gas manifold systems
- Industrial gas plants
- Process gas control

How it Works

Closed
The unbalanced poppet is spring-loaded against the valve seat. Dead-tight sealing is ensured by a considerable force when full upstream pressure is applied over the entire effective area of the seating diameter.

Regulating
Dome-loading may be accomplished by the built-in load and bleed valve combination (or by an externally located pressure regulator) depending upon the specific model used for the application.

As the downstream process demands flow, the decreasing pressure (acting on the outlet side of the diaphragm) allows the dome pressure force to push the diaphragm and lower plate down which, in turn, unseats the poppet.

The described action permits flow to start and the pressure under the piston to gradually increase until balance is achieved between dome pressure forces and opposing downstream pressure forces.

The modulation of the poppet position continues in this manner until process flow demand ceases. The diaphragm is then moved in an upward direction, thus allowing the spring-loaded poppet to close off flow from the upstream side of the regulator.

Technical Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Construction Material</td>
<td>Bronze</td>
</tr>
<tr>
<td>Seat Material</td>
<td>Neoprene</td>
</tr>
<tr>
<td>Seal Material</td>
<td>Copper</td>
</tr>
<tr>
<td>Diaphragm Material</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Gauge Material</td>
<td>Brass, 2½” diameter</td>
</tr>
<tr>
<td>Spring Material</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Port Sizes</td>
<td>· ¼”,½” pipe; AND10050–4 or –8</td>
</tr>
<tr>
<td></td>
<td>· Gauge ports: ¾” pipe</td>
</tr>
<tr>
<td></td>
<td>· Dome-loaded ports: AS4395 (MS33656–4)</td>
</tr>
<tr>
<td>Pressure Rating</td>
<td>Inlet/Outlet: to 3,600 psig (248 BAR)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>−65° F to +160° F (−54° C to +71° C)</td>
</tr>
<tr>
<td>Flow Capacity</td>
<td>Cv = 0.35</td>
</tr>
<tr>
<td></td>
<td>Orifice diameter = 0.14”</td>
</tr>
<tr>
<td>Weight</td>
<td>· GD31 = 14.00 lbs</td>
</tr>
<tr>
<td></td>
<td>· GD31R = 12.00 lbs</td>
</tr>
</tbody>
</table>

Note: Proper filtration is recommended to prevent damage to sealing surfaces.

Circle Seal Controls
2301 Wardlow Circle • Corona, CA 92880
Phone (951) 270-6200 • Fax (951) 270-6201
www.circle-seal.com
GD30 Series

Dimensions & Flow Curves

<table>
<thead>
<tr>
<th>Connection</th>
<th>Dim. L</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 AND10050–4</td>
<td>3.06</td>
</tr>
<tr>
<td>-2 AND10050–8</td>
<td>3.31</td>
</tr>
<tr>
<td>-3 ¼ NPT female</td>
<td>2.75</td>
</tr>
<tr>
<td>-4 ½ NPT female</td>
<td>3.31</td>
</tr>
</tbody>
</table>

Air Flow Chart

Correction factors for gases other than air:

<table>
<thead>
<tr>
<th>Gas</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.000</td>
</tr>
<tr>
<td>Helium</td>
<td>2.690</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3.795</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.016</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.951</td>
</tr>
</tbody>
</table>

Flow rates for gases other than air:

Air Flow Rate \((Q) \times \text{correction factor} \)

How to Order

REPAIR KIT

BASIC MODEL NUMBER

- GD31 Internal dome-loaded
- GD31R Externally dome-loaded

BODY MATERIAL

- B Bronze

INLET PORT

- 1 AND10050–4
- 2 AND10050–8
- 3 ¼ NPT female
- 4 ½ NPT female

Outlet pressure changer per 100 psig inlet pressure change = 2.2 psi.

* Temperature range for oxygen service = −20°F to +250°F

OUTLET PORT

- 1 AND10050–4
- 2 AND10050–8
- 3 ¼ NPT female
- 4 ½ NPT female

OPTIONS

- G Gauges (0–5,000 psig)

CLEANING LEVELS

1. For general oxygen service*
2. For general pneumatic service
3. Specify (define on sales order)

Please consult your Circle Seal Controls distributor, representative, or the factory for information on special connections, operating pressures and temperature ranges.

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.
BLR50 Series
Dynadome Pressure Regulator
Inlet: 600–6,000 psig ; Outlet: 100–5,800 psig

Features
- Quarter-turn control
- Accurate
- Self-venting
- High flow (Cv = 0.50)
- Highly reliable (no springs, diaphragms, or pistons)
- Excellent sensitivity
- 100% tested

Applications
- Manufacturing process
- High pressure test systems
- Compressors
- Bulk gas delivery

Technical Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Construction Material</td>
<td>Brass</td>
</tr>
<tr>
<td>Seat Materials</td>
<td>Nylatron®, Kel-F® or Polyimide</td>
</tr>
<tr>
<td>Seal Materials</td>
<td>Ethylene propylene, neoprene, Viton® or Buna</td>
</tr>
<tr>
<td>Port Sizes</td>
<td>¼”, ½” pipe or ½” AND10050</td>
</tr>
<tr>
<td>Pressure Ratings</td>
<td>• Inlet = 600–6,000 psig (41.4–414 BAR)</td>
</tr>
<tr>
<td></td>
<td>• Outlet = 100–5,800 psig (7–400 BAR)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>−65° F to +160° F (−54° C to +71° C)</td>
</tr>
<tr>
<td>Flow Capacity</td>
<td>Cv = 0.50</td>
</tr>
</tbody>
</table>

Note: Proper filtration is recommended to prevent damage to sealing surfaces.

How it Works

Closed
The balanced poppet is spring-loaded against the valve seat. When full upstream pressure is applied, a slight unbalanced force is developed which further enhances sealing.

Regulating
As the downstream process demands flow, the decreasing pressure (acting on the outlet side of the piston) allows the dome pressure force to push the piston down. This in turn unseats the poppet, which permits flow to start and pressure under the piston to gradually increase until a balance is achieved between the dome pressure forces. The modulation of the poppet position continues in this manner until the process flow demand ceases.

Venting
When the handle is turned to decrease the regulated pressure level, the dome pressure will vent through the dome vent and the downstream pressure will vent through the piston to the vent port.

Circle Seal Controls
2301 Wardlow Circle • Corona, CA 92880
Phone (951) 270-6200 • Fax (951) 270-6201
www.circle-seal.com
BLR50 Series

How to Order

REPAIR KIT

BODY MATERIAL

B Brass

BODY PART NUMBER INLET & OUTLET PORTS

1 ¼” NPT female
2 ½” NPT female
3 AND10050–8

SEAT MATERIAL

0 Ethylene propylene
1 Neoprene (standard)
3 Viton®
4 Buna N

OPTIONS

G Gauges (0–7,500 psig)

CLEANING LEVELS

1 General oxygen* (CSC/CCD 29.20)
2 General pneumatic (GEN CL’G)
3 Specify (define on sales order)

SEAT MATERIALS

1 Nylatron® GS (standard)
2 Kel-F® (limited to 3,600 psig max. inlet, 3,400 psig max. outlet)
9 Polyimide (Vespel® SP-21)

* For oxygen service: 3,600 psig max. inlet pressure and temperature range of −20°F to +250°F.

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.
GD62C & GD65C Series
Internally Dome-loaded Regulator
Inlet & Outlet to 7,000 psig

Features
- Bubble-tight seal
- High pressure
- Constant rapid delivery

Applications
- Breathing systems
- Research laboratories
- Aircraft servicing
- Facility gas systems
- Industrial gas products
- Process gas control

How it Works

Closed
The unbalanced poppet is spring-loaded against the valve seat. Dead-tight sealing is ensured by a considerable force when full upstream pressure is applied over the entire effective area of the seating diameter.

Regulating
Dome-loading may be accomplished by the built-in load and bleed valve combination. The rate of pressurization of the dome may be adjusted by the small screw-type needle valve located on the side of the unit.

As the downstream process demands flow, the decreasing pressure (acting on the outlet side of the diaphragm) allows the dome pressure force to push the diaphragm and lower plate down which, in turn, unseats the poppet.

The described action permits flow to start and the pressure under the piston to gradually increase until balance is achieved between dome pressure forces and opposing downstream pressure forces.

The modulation of the poppet position continues in this matter until process flow demand ceases. The diaphragm is then moved in an upward direction, thus allowing the spring-loaded poppet to close off flow from the upstream side of the regulator.

Technical Data

- **Body Construction Material**: Bronze
- **Seal & Diaphragm Materials**: Neoprene or Viton®
- **Seat Material**: Nylatron® or Vespel® SP-21
- **Gauge Material**: Brass, 2½” diameter
- **Port Sizes**: ¼”, ½” pipe, AND10050–4 or –8 or CGA fittings
- **Temperature Range**: –65° F to +160° F (–54° C to +71° C)
- **Flow Capacity**: Cv = 0.17
- **Orifice diameter = 0.095”
- **Pressure Ratings**
 - Inlet/Outlet: • GD62C Series: to 3,500 psig (241 BAR)
 - GD65C Series: to 7,000 psig (483 BAR)
- **Weight**
 - GD62C = 7.00 lbs
 - GD65C = 10.25 lbs

Note: Proper filtration is recommended to prevent damage to sealing surfaces.
GD62C & GD65C Series

Dimensions & Flow Curves

Panel Mount Detail

3 ø "A" thru ø "B"
B.C. equally space

Air Flow Chart

Correction factors for gases other than air:

<table>
<thead>
<tr>
<th>Gas</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.000</td>
</tr>
<tr>
<td>Helium</td>
<td>2.690</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3.795</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.016</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.951</td>
</tr>
</tbody>
</table>

Flow rates for gases other than air:

Air Flow Rate (Q) × correction factor
GD62C & GD65C Series

How to Order

<table>
<thead>
<tr>
<th>REPAIR KIT</th>
<th>K/ GD62C B 3 3 1 1 2 G</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC MODEL NUMBER & INLET PRESSURE RANGE</td>
<td></td>
</tr>
<tr>
<td>GD62C</td>
<td>3,500 psig</td>
</tr>
<tr>
<td>GD65C</td>
<td>7,000 psig</td>
</tr>
<tr>
<td>BODY MATERIAL</td>
<td>B Bronze</td>
</tr>
<tr>
<td>INLET PORT</td>
<td>1 AND10050–4</td>
</tr>
<tr>
<td></td>
<td>2 AND10050–8</td>
</tr>
<tr>
<td></td>
<td>3 ¼˝ NPT female</td>
</tr>
<tr>
<td></td>
<td>4 ½˝ NPT female</td>
</tr>
<tr>
<td></td>
<td>7 CGA 540</td>
</tr>
<tr>
<td></td>
<td>8 CGA 580</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>G Gauges (to 5,000 or 10,000 psi)</td>
</tr>
<tr>
<td></td>
<td>P Panel mounting provisions (previous page)</td>
</tr>
<tr>
<td>CLEANING LEVELS</td>
<td>1 For general oxygen service*</td>
</tr>
<tr>
<td></td>
<td>2 For general pneumatic service</td>
</tr>
<tr>
<td></td>
<td>3 Specify (define on sales order)</td>
</tr>
<tr>
<td>SEAT MATERIAL</td>
<td>1 Nylatron® (standard)</td>
</tr>
<tr>
<td></td>
<td>2 Polyimide (Vespel® SP-21)</td>
</tr>
<tr>
<td>DIAPHRAGM & SEAL MATERIAL</td>
<td>1 Neoprene (standard)</td>
</tr>
<tr>
<td></td>
<td>2 Viton®</td>
</tr>
<tr>
<td>OUTLET PORT</td>
<td>1 AND10050–4</td>
</tr>
<tr>
<td></td>
<td>2 AND10050–8</td>
</tr>
<tr>
<td></td>
<td>3 ¼˝ NPT female</td>
</tr>
<tr>
<td></td>
<td>4 ½˝ NPT female</td>
</tr>
</tbody>
</table>

* For oxygen service, use Vespel® SP-21 seat. Diaphragm and seals to be Viton® only

Outlet pressure change per 100 psig inlet pressure decay: 1.6 psi
Temperature range for oxygen service: −20° F to +250° F.

Please consult your Circle Seal Controls distributor, representative, or the factory for information on special connections, operating pressures and temperature ranges.

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.

Viton® is a registered trademark of DuPont Dow Elastomers.
Nylatron® is a registered trademark of DSM Engineering Plastic Products.
GD67A Series
High Pressure Dome-loaded Regulator
Inlet & Outlet to 6,000 psig

Features
- Reliable
- Accurate
- Positive shutoff for zero-leak
- Remote operated
- Rapid response
- High pressure, medium flow
- Internal pressure load or external dome loading
- Panel mount option

Applications
High pressure testing
Facility gas systems
Industrial gas plants
Process gas controls
Chemical/petroleum plants

How it Works

Closed
The balanced poppet is spring-loaded against the valve seat. When full upstream pressure is applied, a slightly unbalanced force is developed which further enhances sealing.

Regulating
Dome-loading may be accomplished by the built-in load and bleed valve combination or by an externally located pressure regulator. As the downstream process demands flow, the decreasing pressure (acting on the outlet side of the diaphragm) allows the dome pressure force to push the diaphragm and lower plate down which, in turn, unseats the poppet. This action permits flow to start and the pressure under the piston to gradually increase until balance is achieved between dome pressure forces and opposing downstream pressure forces. The modulation of the poppet position continues in this manner until process flow demand ceases. The diaphragm is then moved in an upward direction, thus allowing the spring-loaded poppet to close off flow from the upstream side of the regulator.

Technical Data

<table>
<thead>
<tr>
<th>Body Construction Materials</th>
<th>Bronze or 303 stainless steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seal Materials</td>
<td>Neoprene, butyl, Viton® or Buna N</td>
</tr>
<tr>
<td>Seat Material</td>
<td>Polyimide or Kel-F®</td>
</tr>
<tr>
<td>Diaphragm Materials</td>
<td>Neoprene, butyl, Viton® or Buna N</td>
</tr>
<tr>
<td>Trim Material</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Port Size</td>
<td>¼” NPT female</td>
</tr>
<tr>
<td>Pressure Ratings</td>
<td>Inlet/Outlet: 0 to 6,000 psig (0 to 414 BAR)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>-65° F to +160° F (-54° C to +71° C)</td>
</tr>
<tr>
<td>Flow Capacity</td>
<td>Cv = 0.37</td>
</tr>
<tr>
<td>Orifice diameter</td>
<td>0.145”</td>
</tr>
<tr>
<td>Weight</td>
<td>• Bronze = 5.50 lbs</td>
</tr>
<tr>
<td></td>
<td>• Stainless steel = 5.00 lbs</td>
</tr>
</tbody>
</table>

Note: Proper filtration is recommended to prevent damage to sealing surfaces.
GD67A Series

How to Order

- **REPAIR KIT**
- **DOME-LOADING**
 - E External
 - I Internal
- **INLET PORT**
 - B Bronze
 - T 303 stainless steel
- **INLET/OUTLET PORT**
 - 4 ¼˝ NPT female

SPECIAL FEATURES
- P Panel mounting (see below)

CLEANING LEVELS
- 1 For general oxygen service
- 2 For general pneumatic service
- 3 To customer specifications

SEAT MATERIAL
- 2 Kel-F®
- 5 Polymide (Vespel® SP-21)

DIAPHRAGM & SEAL MATERIAL
- 1 Neoprene (standard)
- 2 Butyl
- 3 Viton®
- 4 Buna N

* Adapter can be used to accommodate other port configurations
** For oxygen service, use Vespel® SP-21 seat, diaphragm and seals to be Viton® only. Temperature range: −20°F to +250°F.

Please consult your Circle Seal Controls distributor, representative, or the factory for information on special connections, operating pressures and temperature ranges.

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.
GD80 Series
High Pressure Dome-loaded Regulator
Inlet & Outlet to 10,000 psig

Features
- High pressure
- Bubble-tight seal
- Internally or externally dome loaded

Applications
- High pressure testing
- Facility gas systems
- Industrial gas plants
- Process gas controls
- Chemical/petroleum plants

How it Works

Closed
The balanced poppet is spring-loaded against the seat. Bubble-tight sealing is ensured (by a considerable force) when full upstream pressure is applied over the entire effective area of the seating diameter.

Regulating
Dome-loading may be accomplished by the built-in load and bleed valve combination or by an externally located pressure regulator.

As the downstream process demands flow, the decreasing pressure (acting on the outlet side of the diaphragm) allows the dome pressure force to push the diaphragm and lower plate up which, in turn, unseats the poppet.

This action permits flow to start and the pressure under the piston to gradually increase until balance is achieved between dome pressure forces and opposing downstream pressure forces. The modulation of the poppet position continues in this manner until process flow demand ceases. The diaphragm is then moved in a downward direction, thus allowing the spring-loaded poppet to close off flow from the upstream side of the regulator.

Technical Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Construction Material</td>
<td>303 stainless steel</td>
</tr>
<tr>
<td>Seal & Diaphragm Material</td>
<td>Neoprene</td>
</tr>
<tr>
<td>Seat Material</td>
<td>Nylatron® GS</td>
</tr>
<tr>
<td>Spring Material</td>
<td>Stainless steel</td>
</tr>
</tbody>
</table>
| Port Size | • Inlet & outlet: ¼˝ & ½˝ NPT female, ¼˝ & ⅝˝ Aminco
 • Dome port GD81B Series only: ¼˝ NPT female or ¼˝ Aminco |
| Pressure Ratings | Inlet/Outlet: 0 to 10,000 psig (690 BAR) |
| Temperature Range | −65° F to +160° F (−54° C to +71° C) |
| Flow Capacity | Cv = 0.365 |
| Weight | 28 lbs |

Note: Proper filtration is recommended to prevent damage to sealing surfaces.

Circle Seal Controls
2301 Wardlow Circle • Corona, CA 92880
Phone (951) 270-6200 • Fax (951) 270-6201
www.circle-seal.com
GD80 Series

How to Order

K/ GD80A T 4 2 L M

REPAIR KIT

BASIC MODEL NUMBER

GD80A Internally dome-loaded
GD81B Externally dome-loaded

BODY MATERIAL

T 303 stainless steel

OPTIONS

L 10,000 psig 2-12” brass gauges, gauge port ¼” pipe
M Extended bolts for mounting

CLEANING LEVELS

2 For general pneumatic service
3 Specify*
4 Precision pneumatic service

INLET/OUTLET PORT

Size & Type Dimension “L” (below)
4 ¼” NPT female 3½”
6 ½” NPT female 3¾”
7 ¾” Aminco 3½”
8 1” Aminco 3¾”

* List requirements or furnish the factory a copy of the requirements or specifications.
Outlet pressure change per 100 psig of inlet pressure change is 2 psig.

Dimensions & Flow Curves

Air Flow Chart

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.

Nylatron® is a registered trademark of DSM Engineering Plastic Products.
GD90 Series
Dynadome High Flow Dome-loaded Regulator
Inlet & Outlet to 6,000 psig

Features
- High flow capacity
- Accurate pressure regulation
- Wide fluid compatibility

Applications
- High pressure testing
- Facility gas systems
- Industrial gas plants
- Process gas controls
- Bulk facility installations
- Gas turbine engine starter

Technical Data

<table>
<thead>
<tr>
<th>Body Construction Material</th>
<th>Bronze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seal & Diaphragm Material</td>
<td>Neoprene*</td>
</tr>
<tr>
<td>Seat Material</td>
<td>Nylatron®*</td>
</tr>
<tr>
<td>Spring Material</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>Port Sizes</td>
<td>Inlet & outlet: ¾˝, 1˝ & 1¼˝ NPT female, AND10050–12, –16, or –24</td>
</tr>
<tr>
<td>Pressure Ratings</td>
<td>Inlet/Outlet to 6,000 psig (414 BAR)</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>−65° F to +160° F (−54° C to +71° C)</td>
</tr>
<tr>
<td>Flow Capacity</td>
<td>Cv = 5.0</td>
</tr>
<tr>
<td></td>
<td>Orifice diameter = 0.50˝</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 25 lbs</td>
</tr>
</tbody>
</table>

* Optional materials available, see “How to Order”.

Note: Proper filtration is recommended to prevent damage to sealing surfaces.

How it Works

Closed
The balanced poppet is spring-loaded against the valve seat. When full upstream pressure is applied, a slight unbalanced force is developed which further enhances sealing.

Regulating
Dome-loading may be accomplished by the load and bleed valve combination or by an externally located pressure regulator, depending on the specific model used for the application.

As the downstream process demands flow, the decreasing pressure (acting on the outlet side of the diaphragm) allows the dome pressure force to push the diaphragm and lower plate down which, in turn, unseats the poppet.

The described action permits flow to start and the pressure under the piston to gradually increase until balance is achieved between dome pressure forces and opposing downstream pressure forces.

The modulation of the poppet position continues in this manner until process flow demand ceases. The diaphragm is then moved in an upward direction, thus allowing the spring-loaded poppet to close off flow from the upstream side of the regulator.

Circle Seal Controls
2301 Wardlow Circle • Corona, CA 92880
Phone (951) 270-6200 • Fax (951) 270-6201
www.circle-seal.com
GD90 Series

How to Order

REPAIR KIT K/ GD91 B 1 1 1 1 M X

BASIC MODEL NUMBER
- GD91 Externally remote dome-loaded
- GD92 Internally dome-loaded

BODY MATERIAL
- B Bronze

INLET PORT TYPE & SIZE
1. AND10050–12
2. AND10050–16
3. AND10050–24
4. ¾˝ NPT female
5. 1˝ NPT female
6. 1¼˝ NPT female

OUTLET PORT TYPE & SIZE
1. AND10050–12
2. AND10050–16
3. AND10050–24
4. ¾˝ NPT female
5. 1˝ NPT female
6. 1¼˝ NPT female

OPTIONS
- M Extended bolts for mounting
- X Downstream sensing

CLEANING LEVELS
1. For general oxygen service*
2. For general pneumatic service
3. Specify (define on sales order)
4. Precision pneumatic service

SEAT MATERIAL
1. Nylatron® GS (standard)
2. Kel-F***
3. Polyimide (Vespel®)

SEAL MATERIAL
1. Neoprene (standard)
2. EPR
3. Viton®
4. Buna N

*Dome-loading ports are AND10050–4 with tube fittings and ¼˝ NPT female with pipe on inlet and outlet fittings.

Outlet pressure change rate: 0.10 psi per 100 psi inlet pressure change

Please consult your Circle Seal Controls distributor, representative, or the factory for information on special connections, operating pressures and temperature ranges.

Flow Curves & Dimensions

Air Flow Chart

Correction factors for gases other than air:

<table>
<thead>
<tr>
<th>Gas</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.000</td>
</tr>
<tr>
<td>Helium</td>
<td>2.690</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3.795</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.016</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.951</td>
</tr>
</tbody>
</table>

Flow rates for gases other than air:

Air Flow Rate (Q) × correction factor

For Your Safety

It is solely the responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or property damage.

* Nylatron® is a registered trademark of DSM Engineering Plastic Products.
** Kel-F® is a registered trademark of 3M Company.
*** Vespel® is a registered trademark of E.I. du Pont de Nemours and Company.
† Viton® is a registered trademark of DuPont Dow Elastomers.
Porting Configurations for Pressure Regulators

Location Of Ports From Top View
Pressure Regulators

Manual Adjusted and Dome-loaded

Index

<table>
<thead>
<tr>
<th>Series</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR-1 Series</td>
<td>1</td>
</tr>
<tr>
<td>PR-2 Series</td>
<td>3</td>
</tr>
<tr>
<td>PVR Series</td>
<td>5</td>
</tr>
<tr>
<td>PR01 Series</td>
<td>7</td>
</tr>
<tr>
<td>SR800 Series</td>
<td>9</td>
</tr>
<tr>
<td>IR10 Series</td>
<td>11</td>
</tr>
<tr>
<td>PR-50 Series</td>
<td>13</td>
</tr>
<tr>
<td>HPR50 Series</td>
<td>15</td>
</tr>
<tr>
<td>GD720 Series</td>
<td>17</td>
</tr>
<tr>
<td>PR-57 Series</td>
<td>19</td>
</tr>
<tr>
<td>GD30 Series</td>
<td>21</td>
</tr>
<tr>
<td>BLR50 Series</td>
<td>23</td>
</tr>
<tr>
<td>GD62C & GD65C Series</td>
<td>25</td>
</tr>
<tr>
<td>GD67A Series</td>
<td>29</td>
</tr>
<tr>
<td>GD80 Series</td>
<td>31</td>
</tr>
<tr>
<td>GD90 Series</td>
<td>33</td>
</tr>
</tbody>
</table>

Circle Seal Controls
2301 Wardlow Circle • Corona, CA 92880
Phone (951) 270-6200 • Fax (951) 270-6201
www.circle-seal.com
CIRCOR Instrumentation Technologies

CIRCOR Instrumentation Technologies (CIT) is a product group of CIRCOR International (NYSE: CIR), specializing in fluid process control solutions with orifice sizes typically up to 1”. Our main product lines include ball, needle, packless, diaphragm, solenoid, and metering valves, pressure regulators, quick couplers, Gyrolok® compression tube fittings, and fully integrated sampling systems.

CIT markets primarily to the petrochemical, refining, power generation, food and beverage, semiconductor, and pharmaceutical industries, and to OEM’s. CIT separates itself from the competition by offering highly engineered components manufactured to exacting standards and a variety of custom options.