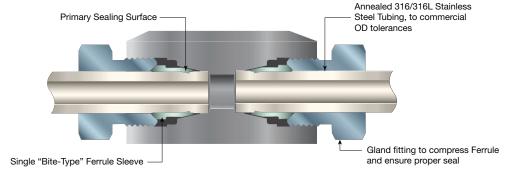
Low Pressure "Speedbite", Single Ferrule to 15,000 psi (1034 bar)

Includes Check Valves, Filters & Couplings

Principle of Operation:


Parker Autoclave Engineers Low Pressure "Speedbite" and "Mini" Series fittings are designed to work with 10V/SW Series and Mini Series Low Pressure Valves as well as Low Pressure Tubing made of commercially sized 316/316L SS in the "Annealed" condition. Pressures to 15,000 psi and sizes from 1/16" to 1/2" are readily available.

The Speedbite connection is a single-ferrule bite-type compression fitting engineered for use with tubing designed by Parker Autoclave Engineers to a controlled hardness. Speedbite fittings employ a bite-type compression style single ferrule that is manually tightened.

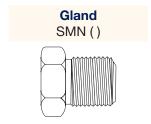
Low Pressure Fittings and Tubing Features:

- Single-ferrule compression sleeve connections for up to 15,000 psi MAWP
- Operating temperatures from -100°F (-73°C) to 650°F (343°C)
- Fast easy 1-1/4 turn make-up of connection
- Available sizes are 1/16", 1/8", 1/4", 3/8", and 1/2"
- Fittings manufactured in accordance with ASME B31.3 Chapter IX standards with UNS S31600/S31603 dual rated 316/316L material cold worked to Parker Autoclave proprietary standards (optional material available).
- Tubing manufactured to commercial OD tolerances ASTM A269 dual rated 316/316L material to a controlled hardness to facilitate proper ferrule bite.
- Molybdenum disulfide-coated gland nuts to prevent galling

All Parker Autoclave Engineers fittings are marked with manufacturers name, part number, material, heat code and maximum pressure for complete traceability.

Low Pressure "Speedbite" design "bites" the tubing with little or no tube distortion

Low Pressure Fittings - Pressures to 15,000 psi (1034 bar)



Each fitting or adapter use UNS S31600/31603 cold worked 316/316L Stainless Steel and are manufactured in accordance with ASME B31.3 Chapter IX standards. (Optional Materials available, contact factory for selection).

(See "Technical Brochure" for Pressure/Temperature effect on temperatures above ambient.)

Connection Components:

All valves and fittings are supplied complete with appropriate glands and compression sleeves. To order these components separately, use order numbers listed. When using plug, ferrule sleeve is not required. Tubing pressure caps can be found in Adapter Brochure.

Ferrule Sleeve
SSL()
SP()

() - Add Tube Size Code

1/8" - 20

1/4" - 40

3/8" - 60

1/2" - 80

Example: 1/4" SW Series Gland - SMN40 Note: Special material glands are normally supplied with four flats in place of standard hex.

1/16" tubing system components are available in the mini-fitting series starting on page 6. 1/16" tubing components can be used in 10V Series valves and fittings if required.

To ensure proper fit use Parker Autoclave Engineers tubing.

NACE/ISO 15156 Compatibility

All PAE Low Pressure "Speedbite" Fittings and Tubing can be made with materials suitable for NACE/ISO 15156 requirements. As per NACE and ISO-15156, it is contingent on the end user to select this material. As this compatibility limits the use of "cold worked" materials, pressure reduction in MAWP can be expected. Please consult our Technical Brochure where we identify the more popular annealed materials along with the pressure reduction. Our Sour Oil and Gas brochure has a more complete description of the available options for pressures up to 30,000 psi.

NACE Suffix adder options:

"-SOG" suffix is used along with optional material to generate a hardness verification of pressure containing parts to generate a NACE certificate of compliance.

Elbow

Catalog	Connection	Outside	Pressure	Orifice			Dimens	ions - inch	es (mm)			Block
Catalog Number	Connection Type	Diameter Tube	Rating psi (bar)*	inches (mm)	А	В	С	D Typical	Е	F	G Thickness	Thickness
SL2200	W125	1/8 (3.18)	15,000 (1034)	.094 (2.39)	1.00 (24.40)	1.50 (38.10)	0.31 (7.87)	0.38 (9.53)	0.75 (19.05)	0.75 (19.05)	-	0.62 (15.75)
SL4400	SW250	1/4 (6.35)	15,000 (1034)	.188 (4.78)	1.38 (35.05)	2.00 (50.80)	0.44 (11.18)	0.63 (15.88)	1.00 (25.40)	1.00 (25.40)	-	0.75 (19.05)
SL6600	SW375	3/8 (9.53)	15,000 (1034)	.312 (7.92)	1.38 (35.05)	2.00 (50.80)	0.53 (13.46)	0.75 (19.05)	1.00 (25.40)	1.00 (25.40)	-	0.75 (19.05)
SL8800	SW500	1/2 (12.70	10,000 (689)	.438 (11.13)	1.75 (44.45)	2.50 (63.50)	0.53 (13.46)	0.93 (23.62)	1.25 (31.75)	1.25 (31.75)	-	1.00 (25.40)
	D HEX C -PM Option A						rking pressuions for refe ot service, Pour local rep	ating is base ure may be or erence only arker Autocoresentative tion add suf- sions.	determined and subject lave Engine	by tubing p to change.	ressure ratir	ng, if lower.

Tee

0		Outside	Pressure	Orifice			Dimensi	ions - inch	es (mm)			5
Catalog Number	Connection Type	Diameter Tube	Rating psi (bar)*	inches (mm)	А	В	С	D Typical	Е	F	G Thickness	Block Thickness
ST2220	W125	1/8 (3.18)	15,000 (1034)	.094 (2.39)	1.00 (24.40)	1.50 (38.10)	0.31 (7.87)	0.38 (9.53)	0.75 (19.05)	0.75 (19.05)	-	0.62 (15.75)
ST4440	SW250	1/4 (6.35)	15,000 (1034)	.188 (4.78)	1.38 (35.05)	2.00 (50.80)	0.44 (11.18)	0.63 (15.88)	1.00 (25.40)	1.00 (25.40)	-	0.75 (19.05)
ST6660	SW375	3/8 (9.53)	15,000 (1034)	.312 (7.92)	1.38 (35.05)	2.00 (50.80)	0.53 (13.46)	0.75 (19.05)	1.00 (25.40)	1.00 (25.40)	-	0.75 (19.05)
ST8880	SW500	1/2 (12.70)	10,000 (689)	.438 (11.13)	1.75 (44.45)	2.50 (63.50)	0.53 (13.46)	0.93 (23.62)	1.25 (31.75)	1.25 (31.75)	-	1.00 (25.40)
	È V	F B	D HEX			Actual wo All dimens For promp Consult yo	rking pressu sions for refe ot service, P our local rep	ure may be or erence only barker Autocoresentative	determined and subject lave Engine	by tubing p t to change. ers stocks s	of any compressure rating select producer. Consult	ng, if lower.
		Tee	•									

Cross

Catalag	Connection	Outside	Pressure	Orifice			Dimens	ions - inch	es (mm)			Dlook
Catalog Number	Connection Type	Diameter Tube	Rating psi (bar)*	inches (mm)	А	В	С	D Typical	E	F	G Thickness	Block Thickness
SX2222	W125	1/8 (3.18)	15,000 (1034)	.094 (2.39)	1.50 (38.10)	1.50 (38.10)	0.31 (7.87)	0.38 (9.53)	0.75 (19.05)	0.75 (19.05)	-	0.62 (15.75)
SX4444	SW250	1/4 (6.35)	15,000 (1034)	.188 (4.78)	2.00 (50.80)	2.00 (50.80)	0.44 (11.18)	0.63 (15.88)	1.00 (25.40)	1.00 (25.40)	-	0.75 (19.05)
SX6666	SW375	3/8 (9.53)	15,000 (1034)	.312 (7.92)	2.00 (50.80)	2.00 (50.80)	0.53 (13.46)	0.75 (19.05)	1.00 (25.40)	1.00 (25.40)	-	0.75 (19.05)
SX8888	SW500	1/2 (12.70)	10,000 (689)	.438 (11.13)	2.50 (63.50)	2.50 (63.50)	0.53 (13.46)	0.93 (23.62)	1.25 (31.75)	1.25 (31.75)	-	1.00 (25.40)
	E L	F	C -PM Option	<u></u>		Actual wo All dimens For promp Consult you	rking pressu sions for refe ot service, P our local rep	arker Autocoresentative	determined and subject lave Engine	by tubing p t to change. eers stocks	of any compressure rating select producer. Consult	ng, if lower.
		Cros	SS									

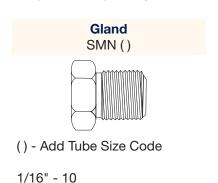
Straight Coupling

Catalag	Connection	Outside	Pressure	Orifice			Dimens	ions - inch	es (mm)		
Catalog Number	Type	Diameter Tube	Rating psi (bar)*	inches (mm)	А	В	С	D Typical	Е	F	G Thickness
15F2211	W125	1/8 (3.18)	15,000 (1034)	.094 (2.39)	0.50 (12.70)	1.25 (31.75)	0.31 (7.87)	0.38 (9.53)			-
6F4422	SW250	1/4 (6.35)	15,000 (1034)	.188 (4.78)	0.62 (15.75)	1.62 (41.15)	0.44 (11.18)	0.63 (15.88)			-
6F6622	SW375	3/8 (9.53)	15,000 (1034)	.312 (7.92)	0.75 (19.05)	0.75 (19.05)	0.53 (13.46)	0.75 (19.05)			-
4F8822	SW500	1/2 (12.70)	10,000 (689)	.438 (11.13)	1.00 (25.40)	2.00 (50.80)	0.53 (13.46)	0.93 (23.62)			-
	A HEX B C (12.14) (20.14)							ating is base ure may be erence only arker Autoc ur local repr	determined and subject lave Engine esentative.	by tubing particle to change.	ressure
Straight Coupling							ting hole op actory for m			•	oer.

Bulkhead Coupling

Bulkhead Coupling

Catalag	Connection	Outside	Pressure	Orifice			Dimens	ions - inch	ies (mm)		
Catalog Number	Connection Type	Diameter Tube	Rating psi (bar)*	inches (mm)	А	В	С	D Typical	Е	F	G Thickness
15BF2211	W125	1/8 (3.18)	15,000 (1034)	.094 (2.39)	0.69 (17.53)	1.75 (44.45)	0.31 (7.87)	0.38 (9.53)	0.38 (9.53)	0.75 (19.05)	0.38 (9.53)
6BF4422	SW250	1/4 (6.35)	15,000 (1034)	.188 (4.78)	0.94 (23.88)	1.88 (47.75)	0.44 (11.18)	0.63 (15.88)	0.50 (12.70)	1.00 (25.403)	0.38 (9.53)
6BF6622	SW375	3/8 (9.53)	15,000 (1034)	.312 (7.92)	0.94 (23.88)	1.88 (47.75)	0.53 (13.46)	0.75 (19.05)	0.50 (12.70)	1.00 (25.403)	0.38 (9.53)
4BF8822	SW500	1/2 (12.70)	10,000 (689)	.438 (11.13)	1.12 (28.45)	2.38 (60.45)	0.53 (13.46)	0.93 (23.62)	0.78 (19.81)	1.38 (35.05)	0.38 (9.53)
	FHEX		MAX D HEX			componer Actual wo rating, if lo All dimens	nt. rking pressu ower. sions for refe	ure may be o	determined and subject	west rating by tubing p to change.	ressure


For mounting hole option add suffix $\ensuremath{\mathbf{PM}}$ to catalog number.

Consult factory for mounting hole dimensions.

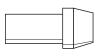
Mini Series Fittings - Pressures to 15,000 psi (1034 bar)

Connection Components:

All valves and fittings are supplied complete with appropriate glands and compression sleeves. To order these components separately, use order numbers listed. When using plug, ferrule sleeve is not required.

1/8" - 20 Example:

1/16" Gland Nut = SMN10



() - Add Tube Size Code

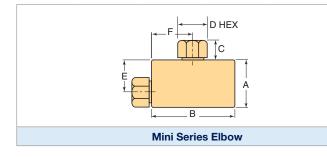
1/16" - 10 1/8" - 20

Example: 1/8" Ferrule Sleeve = SSL20

Plug SP()

() - Add Tube Size Code

1/16" - 10 1/8" - 20

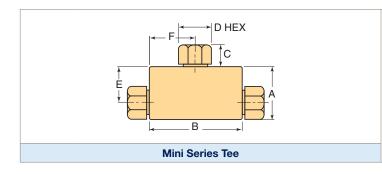

Example: 1/8" Plug = SP20

Note: Special material glands are normally supplied with four flats in place of standard hex.

(See "Technical Brochure" for Pressure/Temperature effect on temperatures above ambient.)

Mini Series Elbow

Catalog	Connection	Outside	Pressure	Orifice			Dimensi	ons - inch	es (mm)			Block
Catalog Number	Type	Diameter Tube	Rating psi (bar)*	inches (mm)	А	В	С	D Typical	Е	F		Thickness
MLE1100	W062	1/16 (1.59)	15,000 (1034)	.055 (1.40)	1.00 (24.40)	1.00 (24.40)	0.31 (7.87)	0.38 (9.53)	0.69 (17.45)	0.69 (17.45)	-	0.56 (14.27)
MLE2200	W125	1/8 (3.18)	15,000 (1034)	.093 (2.36)	1.00 (24.40)	1.00 (24.40)	0.31 (7.87)	0.38 (9.53)	0.69 (17.45)	0.69 (17.45)	-	0.56 (14.27)

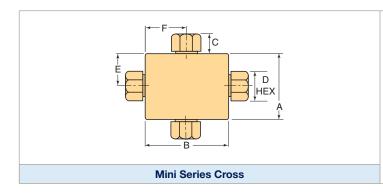


*Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower. All dimensions for reference only and subject to change.

For prompt service, Parker Autoclave Engineers stocks select products. Consult your local representative.

Mini Series Tee

Catalog	Connection	Outside	Pressure	Orifice			Dimens	ions - inch	ies (mm)			Block
Number	Type	Diameter Tube	Rating psi (bar)*	inches (mm)	А	В	С	D Typical	Е	F		Thickness
MTE1110	W062	1/16 (1.59)	15,000 (1034)	.055 (1.40)	1.00 (24.40)	1.38 (34.93)	0.31 (7.87)	0.38 (9.53)	0.69 (17.45)	0.69 (17.45)	-	0.56 (14.27)
MTE2200	W125	1/8 (3.18)	15,000 (1034)	.093 (2.36)	1.00 (24.40)	1.38 (34.93)	0.31 (7.87)	0.38 (9.53)	0.69 (17.45)	0.69 (17.45)	-	0.56 (14.27)

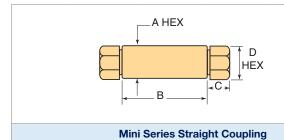


*Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower. All dimensions for reference only and subject to change.

For prompt service, Parker Autoclave Engineers stocks select products. Consult your local representative.

Mini Series Cross

Catalog	Connection	Outside	Pressure	Orifice			Dimensi	ons - inch	es (mm)			Block
Number	Type	Diameter Tube	Rating psi (bar)*	inches (mm)	А	В	С	D Typical	Е	F		Thickness
MXE1111	W062	1/16 (1.59)	15,000 (1034)	.055 (1.40)	1.38 (34.93)	1.38 (34.93)	0.31 (7.87)	0.38 (9.53)	0.69 (17.45)	0.69 (17.45)	-	0.56 (14.27)
MXE2222	W125	1/8 (3.18)	15,000 (1034)	.093 (2.36)	1.38 (34.93)	1.38 (34.93)	0.31 (7.87)	0.38 (9.53)	0.69 (17.45)	0.69 (17.45)	-	0.56 (14.27)



*Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower. All dimensions for reference only and subject to change.

For prompt service, Parker Autoclave Engineers stocks select products. Consult your local representative.

Mini Series Straight Coupling

Catalog	Connection	Outside	Pressure	Orifice			Dimens	ons - inch	es (mm)		
Number	Type	Diameter Tube	Rating psi (bar)*	inches (mm)	А	В	С	D Typical	Е	F	
MCE1110	W062	1/16 (1.59)	15,000 (1034)	.055 (1.40)	0.50 (12.70)	1.25 (31.75)	0.31 (7.87)	0.38 (9.53)			-
MCE2200	W125	1/8 (3.18)	15,000 (1034)	.093 (2.36)	0.50 (12.70)	1.25 (31.75	0.31 (7.87)	0.38 (9.53)			-

*Maximum pressure rating is based on the lowest rating of any component.

Actual working pressure may be determined by tubing pressure rating, if lower.

All dimensions for reference only and subject to change.

For prompt service, Parker Autoclave Engineers stocks select products. Consult your local representative.

Low Pressure Tubing - Pressures to 15,000 psi (1034 bar)

Parker Autoclave Engineers offers a complete selection of annealed, seamless stainless steel tubing designed to match the performance standards of Parker Autoclave Low Pressure valves and fittings. This tubing is manufactured of UNS S316/S31603, 316/316L Stainless Steel and furnished in random lengths between 20 feet (6 meters) and 26.5 feet (8 meters). In order to ensure proper sleeve "bite" into tubing, Parker Autoclave Engineers specifies and controls the strength and hardness levels of both the tube and sleeve materials.

Inspection and Testing:

Parker Autoclave Engineers annealed low pressure tubing is inspected for compliance with specified defect restrictions as well as carburization or intergranular carbide precipitation. The tubing outside diameter and wall thickness is controlled within close tolerance to assure proper fit. Sample pieces of tube (for each lot) are tested to confirm mechanical properties for proper compression sleeve "bite" and pressure capability. Furthermore, the sample tubes are pressure tested as a final check.

Special Material:

In addition to the type 316/316L stainless steel tubing in the annealed condition listed in this section, Parker Autoclave Engineers has a limited stock of hard-to-obtain shorter lengths of the following tubing materials:

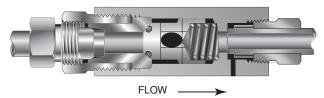
Monel*, Inconel 600*, Titanium Grade 2*, Hastelloy C276*, Inconel 625*, and Incoloy 825* (See Technical Catalog for additional information)

Note: * Trademark names, Please consult factory for stock availabilty.

NACE MR0175/ISO 15156 Options are available. Consult Factory.

Tubing Tolerance:

Nominal Tubing Size inches	Tolerance/Outside Diameter inches (mm)
1/16	.064/.062 (1.62/1.57)
1/8	.128/.125 (3.25/3.18)
1/4	.254/.250 (6.45/6.35)
3/8	.379/.375 (9.74/9.53)
1/2	.505/.500 (12.83/12.70)


Tubing Details: 316/316L, UNS S31600/S31603 Stainless Steel (Annealed) to commercial OD sizing tolerances

*Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower. All dimensions for reference only and subject to change.

For prompt service, Parker Autoclave Engineers stocks select products. Consult your local representative.

Catalog	Tube	Fits Connection		Tube Size inches (mm)		Flow Area		Working	Pressure psi	(bar)*	
Number	Material	Type	Outside Diameter	Inside Diameter	Wall Thickness	in² (mm²)	-100 to 100°F (-73 to 37.8°C)	200°F (93°C)	400°F (204°C)	600°F (316°C)	650°F (343°C)
MS15-070	316SS	W062	1/16 (1.59)	0.026 (0.66)	.018 (0.45)	0.0005 (0.32)	15,000 (1034)	15,000 (1034)	14,400 (992)	13,600 (937)	12,600 (868)
MS15-200	316SS	W125	1/8	0.052 (1.32)	.036 (0.91)	0.002 (1.29)	15,000 (1034)	15,000 (1034)	14,400 (992)	13,600 (937)	12,600 (868)
MS15-051	31033	W 125	(3.18)	0.062 (1.57)	.032 (0.81)	0.003 (1.94)	11,650 (803)	11,650 (803)	11,250 (715)	10,680 (730)	9,850 (630)
MS15-203	316SS	SW250	1/4	0.084 (2.13)	0.083 (2.11)	0.006 (3.87)	15,000 (1034)	15,000 (1034)	14,400 (992)	13,600 (937)	12,600 (868)
MS15-055	31033	300250	(6.35)	0.125 (3.18)	0.062 (1.57)	0.012 (7.74)	11,650 (8034)	11,650 (8034)	11,250 (775)	10,600 (730)	9,850 (679)
MS15-204				0.139 (3.53)	0.118 (3.00)	0.015 (9.79)	15,000 (1034)	15,000 (1034)	14,400 (992)	13,600 (937)	12,600 (868)
MS15-084	316SS	SW375	3/8 (9.53)	0.195 (4.95)	0.090 (2.29)	0.030 (19.40)	10,000 (690)	10,000 (690)	9,650 (665)	9,000 (620)	8,400 (580)
MS15-062				0.250 (6.35)	0.062 (1.57)	0.049 (31.61)	7,500 (517)	7,500 (517)	7,200 (496)	6,800 (468)	6,300 (434)
MS15-205	316SS	SW500	1/2	0.270 (6.86)	0.118 (3.00)	0.055 (35.48)	10,000 (689)	10,000 (689)	9,650 (665)	9,000 (620)	8,400 (579)
MS15-065	31033	3000	(12.70)	0.375 (9.53)	0.062 (1.57)	0.110 (70.97)	5,500 (379)	5,500 (379)	5,250 (361)	4,950 (341)	4,600 (317)

Low Pressure Check Valves - Pressures to 15,000 psi (1034 bar)

SWO Series O-Ring Check Valve

Provide unidirectional flow and tight shut-off for liquids and gases with high reliability. When differential drops below cracking pressure, valve shuts off. (**Not for use as relief valve.**)

Temperature Ranges:

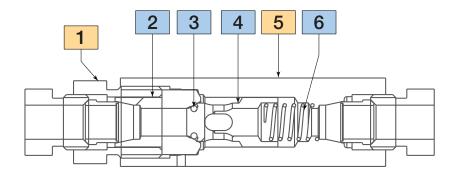
Viton (FKM) O-ring (std.): 0° to 400°F (-18° to 204°C)
Buna-N O-ring (**-BO** suffix): 0° to 250°F (-18° to 121°C)
FFKM O-ring (**-KO** suffix): 30° to 500°F (-18° to 260°C)
PTFE O-ring (**-TO** suffix): -100° to 400°F (-73° to 204°C)
PTFE O-ring with Low Temp Spring (**-LTTO** suffix): to -100°F (-73°C)

Cracking Pressure: 20 psi (1.38 bar) ±30%. Springs for higher cracking pressures up to 100 psi available on special order for O-ring style check valves only.

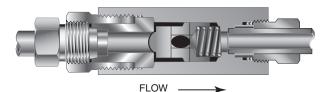
Installation: Vertical or Horizontal as required. Flow Direction Arrow marked on valve body.

CAUTION: While testing has shown O-Rings to provide satisfactory service life, both cyclic and shelf life may vary widely with differing service conditions, properties of reactants, pressure and temperature cycling and age of the O-ring. FREQUENT INSPECTIONS SHOULD BE MADE to detect any deterioration, and O-rings replaced as required.

(See "Technical Brochure" for Pressure/Temperature effect on temperatures above ambient.)


Material of Construction:

Item #	Description	Material
1	Gland Nut	316 SS
2	Cover	316 SS
3	O-ring	FKM
4	Poppet	316 SS
5	Body	316 SS
6	Spring	302 SS
	Typical spare parts found in Repair k	(its


O-Ring Check Valve Repair Kits:

Check Valves are easily repaired. Add "R" to front of valve catalog number for proper repair kit (example: RSWO8800)

See "Cover Torque" on page 14 for re-assembly. Include any catalog number suffix marked on original part when ordering repair kit.

Low Pressure Check Valves - Pressures to 15,000 psi (1034 bar)

SWB Series Ball Check Valve

Prevent reverse flow where leak-tight shut-off is not mandatory. When differential drops below cracking pressure, valve closes. With all-metal components, valve can be used up to 650°F (343°C). See Technical Information section for connection temperature limitations. (**Not for use as relief valve.**)

Ball and poppet are an integral design to assure positive, in-line seating without "chatter". Poppet is designed essentially for axial flow with minimum pressure drop.

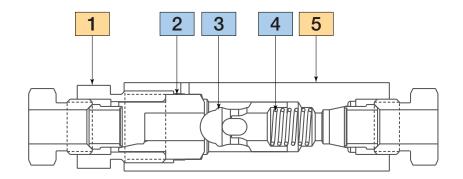
Cracking Pressure: 20 psi (1.38 bar) +/- 30% Optional cracking pressures **NOT** available in Ball Style Check Valves

Temperature: Minimum operating temperature for standard ball check valves 0°F (-17.8°C). For low temperature option to -100°F (-73°C) add suffix **LT** (Low temperature spring).

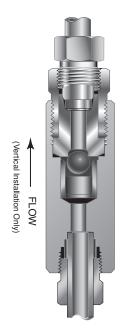
Installation: Vertical or Horizontal as required. Flow Direction Arrow marked on valve body.

NOTE: For optional material see Technical Brochure. Special material check valves are normally supplied with four flats in place of standard hex.

(See "Technical Brochure" for Pressure/Temperature effect on temperatures above ambient.)


Material of Construction:

Item #	Description	Material				
1	Gland Nut	316 SS				
2	Cover	316 SS				
3	Poppet	316 SS				
4	Spring	302 SS				
5	Body	316 SS				
	Typical spare parts found in Repair Kits					


Basic Ball Check Valve Repair Kits:

Check Valves are easily repaired. Add "R" to front of valve catalog number for proper repair kit (example: RSWB6600)

See "Cover Torque" on page 14 for re-assembly. Include any catalog number suffix marked on original part when ordering repair kit.

Low Pressure Check Valves - Pressures to 15,000 psi (1034 bar)

SWK Series Ball Type **Excess Flow Valves**

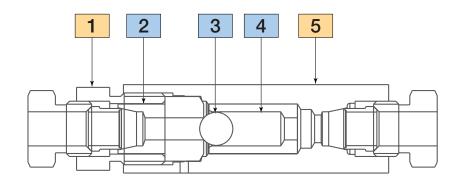
Protects pressure gauges and pressure instrumentation from sudden surges in flow or venting in the event of line failure.

Vertical Installation: Since this type of check valve employs a non-spring loaded ball, valve MUST be installed in VERTICAL position with arrow on valve body pointing UP. (cover gland up).

Resetting Valve: Equalize the pressure across the ball. The ball will drop and reset automatically.

Temperature: Operating temperature for standard ball excess flow valves -100°F to 650°F (-73° to 343°C).

(See "Technical Brochure" for Pressure/Temperature effect on temperatures above ambient.)


Material of Construction:

Item #	Description	Material				
1	Gland Nut	316 SS				
2	Cover	316 SS				
3	Ball	302 SS				
4	Sleeve	316 SS				
5	Body	316SS				
	Typical spare parts found in Repair Kits					

Ball Type Excess Flow Repair Kits:

Excess Flow Valves are easily repaired. Add "R" to front of valve catalog number for proper repair kit. (example: RSWK8802)

See "Cover Torque" on page 14 for re-assembly. Include any catalog number suffix marked on original part when ordering repair kit.

Low Pressure Check Valves - Pressures to 15,000 psi (1034 bar)

SWKO Series O-Ring Type Excess Flow Valves

Protects pressure gauges and other pressure instrumentation from sudden surges in flow due to operator error or line failure. This valve provides dependable, tight shut-off.

Vertical Installation: Since this type of check valve employs a non-spring loaded poppet, valve MUST be installed in VERTICAL position with arrow on valve body pointing UP. (cover gland up).

Resetting Valve: Equalize the pressure across the poppet. The poppet will drop and reset automatically.

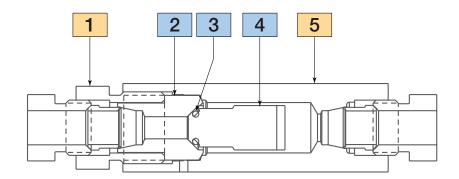
Temperature Ranges:

Viton (FKM) O-ring (std.): 0° to 400°F (-18° to 204°C) Buna-N O-ring (**-BO** suffix): 0° to 250°F (-18° to 121°C) PTFE O-ring (**-TO** suffix): -100° to 400°F (-73° to 204°C)

CAUTION: While testing has shown O-Rings to provide satisfactory service life, both cyclic and shelf life may vary widely with differing service conditions, properties of reactants, pressure and temperature cycling and age of the O-ring. FREQUENT INSPECTIONS SHOULD BE MADE to detect any deterioration, and O-rings replaced as required.

CAUTION: See Tubing section for proper selection of tubing.

(See "Technical Brochure" for Pressure/Temperature effect on temperatures above ambient.)


Material of Construction:

Item #	Description	Material					
1	Gland Nut	316 SS					
2	Cover	316 SS					
3	O-Ring	FKM					
4	Sleeve	316 SS					
5	Body	316SS					
	Typical spare parts found in Repair Kits						

O-Ring Excess Flow Valve Repair Kits:

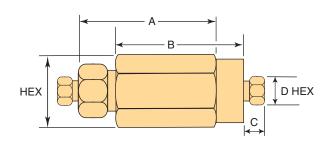
Excess Flow Valves are easily repaired. Add "R" to front of valve catalog number for proper repair kit (example: RSWKO6600)

See "Cover Torque" on page 14 for re-assembly. Include any catalog number suffix marked on original part when ordering repair kit.

SWO O-Ring Check Valves

Cotolog	Fits	Pressure	Orifice	Rated	Cover		Dimen	sions - inches	s (mm)	
Catalog Number	Connection Rating Inches		lorque	Α	В	С	D Typical	Hex		
SWO2200	W125	15,000 (1034)	.094 (2.39)	.15	.20 (27)	2.25 (57.15)	1.88 (47.75)	0.31 (7.87)	0.38 (9.6)	0.63 (15.88)
SWO4400	SW250	15,000 (1034)	.188 (4.78)	.63	.20 (27)	3.18 (80.77)	2.56 (65.02)	0.44 (11.18)	0.63 (15.88)	0.81 (20.57)
SWO6600	SW375	15,000 (1034)	.250 (6.35)	1.70	.55 (75)	3.56 (90.42)	3.00 (76.20)	0.53 (13.46)	0.75 (19.05)	1.00 (25.40)
SWO8800	SW500	10,000 (689)	.375 (9.53)	3.40	.70 (95)	4.18 (106.17)	3.50 (89.90)	0.53 (13.46)	0.93 (23.62)	1.38 (35.05)

SWB Ball Check Valves

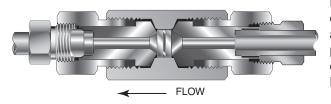

SWB2200	W125	15,000 (1034)	.094 (2.39)	.15	.20 (27)	2.25 (57.15)	1.88 (47.75)	0.31 (7.87)	0.38 (9.6)	0.63 (15.88)
SWB4400	SW250	15,000 (1034)	.188 (4.78)	.63	.45 (61)	3.18 (80.77)	2.56 (65.02)	0.44 (11.18)	0.63 (15.88)	0.81 (20.57)
SWB6600	SW375	15,000 (1034)	.250 (6.35)	1.70	.55 (75)	3.56 (90.42)	3.00 (76.20)	0.53 (13.46)	0.75 (19.05)	1.00 (25.40)
SWB8800	SW500	10,000 (689)	.375 (9.53)	3.40	.50 (68)	4.18 (106.17)	3.50 (89.90)	0.53 (13.46)	0.93 (23.62)	1.38 (35.05)

SWK Ball Type Excess Flow Valves

SWK2202	W125	15,000 (1034)	.094 (2.39)	.12†	.20 (27)	2.25 (57.15)	1.88 (47.75)	0.31 (7.87)	0.38 (9.6)	0.63 (15.88)
SWK4402	SW250	15,000 (1034)	.188 (4.78)	.37†	.40 (54)	3.18 (80.77)	2.56 (65.02)	0.44 (11.18)	0.63 (15.88)	0.81 (20.57)
SWK6602	SW375	15,000 (1034)	.250 (6.35)	.104†	.80 (110)	3.56 (90.42)	3.00 (76.20)	0.53 (13.46)	0.75 (19.05)	1.00 (25.40)
SWK8802	SW500	10,000 (689)	.375 (9.53)	.212†	.50 (68)	4.18 (106.17)	3.50 (89.90)	0.53 (13.46)	0.93 (23.62)	1.38 (35.05)

SWKO O-Ring Type Excess Flow Valves

SWKO4400	SW250	15,000 (1034)	.188 (4.78)	3††	.40 (54)	3.12 (79.25)	2.56 (65.02)	0.44 (11.18)	0.63 (15.88)	0.81 (20.57)
SWKO6600	SW375	15,000 (1034)	.250 (6.35)	5††	.40 (54)	3.50 (88.90)	3.00 (76.20)	0.53 (13.46)	0.75 (19.05)	1.00 (25.40)
SWKO8800	SW500	10,000 (689)	.375 (9.53)	10††	.50 (68)	4.31 (109.47)	3.50 (89.90)	0.53 (13.46)	0.93 (23.62)	1.38 (35.05)

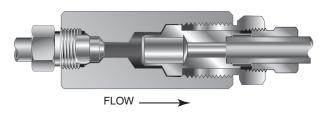

Check and Excess Flow Valves

All check valves are furnished complete with connection components unless otherwise specified.

- † Check Flow** water, GPM
- †† Check Flow** CFM, nitrogen @ 500 psi (34.47 bar), RT ** - For flow using alternate fluids, consult Parker Autoclave Engineers.

*Maximum pressure rating is based on the lowest rating of any component. Actual working pressure may be determined by tubing pressure rating, if lower. All dimensions for reference only and subject to change. For prompt service, Parker Autoclave stocks select products. Consult your local representative.

Low Pressure Line Filter - Pressures to 15,000 psi (1034 bar)


SLF Series Dual Disc Line Filters

Dual-Disc Line Filters are utilized in numerous industrial, chemical processing, aerospace, nuclear and other applications. With the dual-disc design, large contaminant particles are trapped by the upstream filter element before they can reach and clog the smaller micron-size downstream element. Filter elements can be easily replaced.

Materials:

Body, Cover, and Gland Nut - CW 316/316L Stainless Steel

Filter Element: 316L Stainless Steel, Sintered Disc Type Downstream/upstream micron size 35/65 is standard. 5/10 or 10/35 also available when specified. Other element combinations available on special order.

SWF Series Cup Type Line Filters

High Flow Cup-Type Line Filters are recommended in low pressure systems requiring both high flow rates and maximum filter surface area. Widely used in the industrial and chemical processing fields, the cup design offers as much as six times the effective filter area as compared to disc-type units. In addition, the filter elements can be quickly and easily replaced.

Materials:

Body, Cover, and Gland Nut - CW 316/316L Stainless Steel.

Filter Element: 316L Stainless Steel, Sintered Cup Type. Standard elements available in choice of 5, 35 or 65 micron sizes. **Note:** Filter ratings are nominal.

Spare Parts: Filter Elements are only replaceable part with either filter type. See chart on page 14 for Filter Element part numbers.

Temperature Range: Both Models -100° to 650°F (-73° to 343°C). (See "Technical Brochure" for Pressure/Temperature effect on temperatures above ambient.)

- NOTE 1: All filters furnished complete with connection components unless otherwise specified. All dimensions for reference only and subject to change. For optional materials, see Needle Valve Options section
- NOTE 2: Parker Autoclave Engineers disc and cup type filters are designed to filter small amounts of process particles. It is recommended that all fluids are thoroughly cleaned prior to entering the higher pressure system.
- NOTE 3: Special material filters are normally supplied with four flats in place of standard hex.
- NOTE 4: Pressure differential not to exceed 1,000 psi (69 bar) in a flowing condition. Filter replacement is recommended.
- NOTE 5: Larger micron size filter element is installed on the upstream (inlet) side.

SLF Dual Disc Line Filters

Catalag	Pressure	Orifice	Micron	Replacement	Connection	Effective Filter		Dimensi	ons - incl	nes (mm)	
Catalog Number	Rating psi (bar)*	Rating inches Size** Filters P/N Size and Type Elements Are		Elements Area in ² (mm ²)	А	В	С	D Typical	Hex		
SLF2200			35/65	65um=P-0562							
SLF2200-5/10	15,000		5/10	35um=P-0870	W125	.06 (38.70)	2.31	1.25	0.31	0.38 (9.6)	0.62
SLF2200-10/35	(1034)	(2.39)	10/35	10um=P-1750 5um=P-1749			(58.67)	(31.75)	(7.87)		(15.74)
	,										
SLF4400		15,000 .125 5/10	35/65	65um=P-0650							
SLF4400-5/10			5/10	35um=P-0805	SW250	.15	2.94	1.68 (42.67)	0.44 (11.17)	0.63 (15.88)	0.81 (20.57)
SLF4400-10/35	(1034)	(3.18)	10/35	10um=P-1785 5um=P-1650		(96.77)	(75.56)				
	,										
SLF6600			35/65	65um=P-0650							
SLF6600-5/10	15,000	.188	5/10	35um=P-0805	SW375	.15	2.94	1.68	0.53	0.75	1.00
SLF6600-10/35	(1034)	(4.78)	10/35	10um=P-1785 5um=P-1650		(96.77)	(75.56	(42.67)	(13.46)	(19.05)	(25.40)
SLF8800			35/65	65um=P-0764							
SLF8800-5/10	10,000		5/10	35um=P-0794	SW500	.25 (161.29)	3.56	1.94	0.53 (13.46)	0.93	1.18
SLF8800-10/35	(689)	(6.35)	10/35	10um=P-1784 5um=P-1783	P-1784		(90.42)	(49.27)	(13.46)	(23.62)	(29.97)

SWF Cup T	ype Lin	e Filte	ers										
SWF4-5			5	201A-2916									
SWF4-35	15,000 (1034)	.188 (4.78)	35	203A-2916	SW250	.81 (522.57)	3.18 (80.77)	2.56 (65.02)	0.44 (11.17)	0.63 (15.88)	0.81 (20.57)		
SWF4-65	(1004)	(4.70)	65	204A-2916		(022.01)	(00.77)	(00.02)	(11.17)	(13.00)	(20.57)		
SWF6-5	45.000	0.10	5	201A-2916			0.50	0.00	0.50	0.75	4.00		
SWF6-35	15,000 (1034)	.312 (7.92)	35	203A-2916	SW375	.81 (522.57)	3.56 (90.42)	3.00 (76.20)	0.53 (13.46)	0.75 (19.05)	1.00 (25.40)		
SWF6-65	(100.)	(1.102)	65	204A-2916		(0==101)	(001.2)	(, 0, 20)	(10110)	(10100)	(201.0)		
SWF8-5	10.000	400	5	205A-2916		1.50	3.18	2.56	0.50	0.00	1.38		
SWF8-35	10,000 (689)	(11.13)	-	·	35	207A-2916	SW500	1.53 (987.09)	(80.77)	(65.02)	0.53 (13.46	0.93 (23.62)	(35.05)
SWF8-65	()	(*****)	65	208A-2916		(551155)	(00111)	()	(1111	(====,	(
HEX D D D D D D D D D D D D D D D D D D D				HEX	— A — — — — — — — — — — — — — — — — — —	C HEX	on upstre complete otherwise Other mi Change I ingly. For Options: *Maximu lowest ra Actual w tubing pr All dimer change.	micron size am (inlet) e with conre e specified cron sizes last digits or optional resection. m pressure titing of any orking presersure ratinsions for resection malallation" broadlation broadlation broadlation in the size of the siz	side. All fill nection cor available cof the catal naterials, so compone ssure may ng, if lowe eference o	ners furnish mponents on on special of on special of on special on	order. r accord- Valve ne ined by		
SLF Du	ıal Disc Lin	e Filters		SWF Cup Type Line Filters									

NOTES:	

NOTES:	

High Pressure Valves • Fittings • Tubing to 150,000 psi.

Reactors • Vessels Instrumentation

Air Driven, High Flow, High Pressure Liquid Pumps

THIS IS PARKER

Parker's Motion & Control Technologies

At Parker, we're guided by a relentless drive to help our customers become more productive and achieve higher levels of profitability by engineering the best systems for their requirements. It means looking at customer applications from many angles to find new ways to create value. Whatever the motion and control technology need, Parker has the experience, breadth of product and global reach to consistently deliver. No company knows more about motion and control technology than Parker. For further information call 1-800-C-Parker.

MA	RKET	KEY MA	RKETS	KEY PR	ODUCTS
	AEROSPACE	Aircraft Engines Commercial Commerical Transports Military Aircraft Regional Transports	Business and General Aviation Land-Based Weapons Systems Missiles and Launch Vehicles Unmanned Aerial Vehicles	Flight Control Systems & Components Fluid Conveyance Systems Fluid Metering Delivery & Atomization Devices Fuel Systems & Components	Hydraulic Systems & Components Inert Nitrogen Generating Systems Pneumatic Systems & Components Wheels & Brakes
	CLIMATE CONTROL	Agriculture Food, Beverage and Dairy Precision Cooling Transportation	Air Conditioning Life Sciences & Medical Processing	Co2 Controls Electronic Controllers Filter Driers Hand Shut-Off Valves Hose & Fittings	Pressure Regulating Valves Refrigerant Distributors Safety Relief Valves Solenoid Valves Thermostatic Expansion Valves
	ELECTRO- MECHANICAL	Aerospace Life Science & Medical Packaging Machinery Plastics Machinery & Converting Semiconductor & Electronics Factory Automation	Machine Tools Paper Machinery Primary Metals Textile Wire & Cable	AC/DC Drives & Systems Electric Actuators, Gantry Robots & Slides Electrohydrostatic Actuation Systems Electromechanical Actuation Systems Human Machine Interface	Linear Motors Stepper Motors, Servo Motors Drives & Controls Structural Extrusions
ICCea	FILTRATION	Food & Beverage Life Sciences Mobile Equipment Power Generation Transportation	Industrial Machinery Marine Oil & Gas Process	Analytical Gas Generators Compressed Air & Gas Filters Condition Monitoring Engine Air, Fuel & Oil Filtration & Systems	Hydraulic, Lubrication & Coolant Filters Process, Chemical, Water Microfiltration Filters Nitrogen, Hydrogen & Zero Air Generators
	FLUID and GAS HANDLING	Aerospace Agriculture Bulk Chemical Handling Construction Machinery Food & Beverage Fuel & Gas Delivery	Industrial Machinery Mobile Oil & Gas Transportation Welding	Brass Fittings & Valves Diagnostic Equipment Fluid Conveyance Systems Industrial Hose	PTFE & PFA Hose, Tubing & Plastic Fittings Rubber & Thermoplastic Hose & Couplings Tube Fittings & Adapters Quick Disconnects
	HYDRAULICS	Aerospace Aerial lift Agriculture Construction Machinery Forestry	Industrial Machinery Mining Oil & Gas Power Generation & Energy Truck Hydraulics	Diagnostic Equipment Hydraulic Cylinders & Accumulators Hydraulic Motors & Pumps Hydraulic Systems Hydraulic Valves & Controls	Power Take-Offs Rubber & Thermoplastic Hose & Couplings Tube Fittings & Adapters Quick Disconnects
	PNEUMATICS	Aerospace Conveyor & Material Handling Factory Automation Life Science & Medical	Machine Tools Packaging Machinery Transportation & Automotive	Air Preparation Brass Fittings & Valves Manifolds Pneumatic Accessories Pneumatic Actuators & Grippers Pneumatic Valves & Controls	Quick Disconnects Rotary Actuators Rubber & Thermoplastic Hose & Couplings Structural Extrusions Thermoplastic Tubing & Fittings Vacuum Generators, Cups & Sensors
	PROCESS CONTROL	Chemical & Refining Food, Beverage & Dairy Medical & Dental	Microelectronics Oil & Gas Power Generation	Analytical Sample Conditioning Products & Systems Fluoropolymer Chemical Delivery Fittings, Valves & Pumps High Purity Gas Delivery Fittings, & Valves & Regulators	Instrumentation Fittings, Valves Regulators Medium Pressure Fittings & Valves Process Control Manifolds
	SEALING and SHIELDING	Aerospace Chemical Processing Consumer Energy, Oil & Gas Fluid Power General Industrial	Information Technology Life Sciences Military Semiconductor Transportation	Dynamic Seals Elastomeric 0-Rings Emi Shielding Extruded & Precision-Cut, Fabricated Elastomeric Seals	Homogeneous & Inserted Elastomeric Shapes High Temperature Metal Seals Metal & Plastic Retained Composite Seals Thermal Management

Parker Worldwide

North America

USA – Corporate, Cleveland, OH Tel: +1 256 896 3000

USA – IPD, Huntsville, AL Tel: +1 256 881 2040 ipdcct@parker.com

USA – IPD, (Autoclave), Erie, PA Tel: +1 814 860 5700 ipdaecct@parker.com

CA – Canada, Grimsby, Ontario Tel +1 905-945-2274 ipd_canada@parker.com

South America

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129 falecom@parker.com

BR – Brazil, Diadema, SP Diadema, SP Tel: +55 11 4360 6700 falecom@parker.com

CL - Chile, Santiago Tel: +56 (0) 2 2303 9640 falecom@parker.com

MX – Mexico, Toluca Tel: +52 722 275 4200 contacto@parker.com

Asia Pacific

AU – Australia, Dandenong Tel: +61 (0)2 9842 5150 customer.service.au@parker.com

CN – China, Shanghai Tel: +86 21 2899 5000 INGtechnical.china@parker.com

HK – Hong Kong Tel: +852 2428 8008

IN - India, Mumbai Tel: +91 22 6513 7081-85

ID – Indonesia, Tangerang Tel: +62 2977 7900 parker.id@parker.com

JP – Japan, Tokyo Tel: +(81) 3 6365 4020 infophj@parker.com

KR - South Korea, Seoul Tel: +82 2 559 0400 parkerkr@parker.com

MY - Malaysia, Selangor Tel: +603 784 90 800 parkermy@parker.com

SG - Singapore, Tel: +65 6887 6300 parkers@parker.com

TH – Thailand, Bangkok Tel: +66 2 186 7000 phthailand@parker.com

TW – Taiwan, Taipei Tel: +886 2 2298 8987 enquiry.taiwan@parker.com

VN – Vietnam, Hochi Minh City Tel: +848 382 508 56 parker_viet@parker.com

Europe, Middle East, Africa

AE - UAE, Dubai Tel: +971 4 812 7100 parker.me@parker.com

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ – Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BG – Bulgaria, Sofia Tel: +359 2 980 1344 parker.bulgaria@parker.com

BY - Belarus, Minsk Tel: +48 (0)22 573 24 00 parker.belarus@parker.com

CH – Switzerland, Etoy Tel: +41 (0) 21 821 87 00 parker.switzerland@parker.com

CZ - Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK – Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com ES - Spain, Madrid
Tel: +34 902 33 00 01
parker.spain@parker.com

FI - Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR – Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HU – Hungary, Budapest Tel: +36 223 885 470 parker.hungary@parker.com

IE – Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ – Kazakhstan, Almaty Tel: +7 7273 561 000 parker.easteurope@parker.com

NL – The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO – Norway, Stavanger Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE – Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK – Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA – Ukraine, Kiev Tel: +48 (0)22 573 24 00 parker.ukraine@parker.com

UK – United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

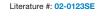
ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

! CAUTION!

Do not mix or interchange component parts or tubing with those of other manufacturers. Doing so is unsafe and will void warranty.

Parker Autoclave Engineers Valves, Fittings, and Tools are not designed to interface with common commercial instrument tubing and are designed to only connect with tubing manufactured to Parker Autoclave Engineers AES specifications. Failure to do so is unsafe and will void warranty.

WARNING


FAILURE, IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and application and review the information concerning the product or system in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met. The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation by users having technical expertise. It is important that you analyze all aspects of your application by users having technical expertise. It is important that you analyze all aspects of your application by users having technical expertise. It is important that you analyze all aspects of your application by users having technical expertise. It is important that you analyze all aspects of your application by users having technical expertise. It is important that you analyze all aspects of your application by users having the product and/or system options for further investigation by users having the product and/or system options for further investigation by users having the product and/or system options for further investigation by users having the product and/or system options for further investigation by users having the product and/or system options for further investigation by users having the product and/or system options for further investigation by users having the product and/or system options for furt

Offer of Sale

The items described in this document are available for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. Any sale contract entered by Parker will be governed by the provisions stated in Parker's standard terms and conditions of sale (copy available upon request).

©2018 Parker Hannifin Corporation | Autoclave Engineers is a registered trademark of the Parker Hannifin Corporation

August 2018

Instrumentation Products Division Autoclave Engineers Operation 8325 Hessinger Drive Erie, PA 16509-4679 Tel: 814 860 5700 Fax: 814 860 5811 www.autoclave.com www.parker.com/jpd Instrumentation Products Division Division Headquarters 1005 A Cleaner Way Huntsville, AL 35805 USA Tel: 256 881 2040 Fax: 256 881 5072 Parker Hannifin Manufacturing Ltd. Instrumentation Products Division, Europe Riverside Road Pottington Business Park Barnstaple, UK, EX31 1NP, UK Tel: 44 1271 313131 Fax: 44 1271 373636